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> Leader in network video surveillance

> Swedish company

> Part of Canon group

> About 4000 employees worldwide

Axis Communications
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> Long history of chip development

– TGA/CGA – Printer connectivity

– ETRAX – SoC for network connected devices

– ARTPEC – Network video

> Why in house chip development?

– Differentiation

– Optimization for application

– Access to technology

– Unit cost

Axis ASIC Development
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> Each generation offers more:

– features

– processing power

– memory bandwidth

> ARTPEC-1 (1999) – First chip for network video

> ARTPEC-2 (2003) – MPEG encoding

> ARTPEC-3 (2007) – One chip network camera

> ARTPEC-4 (2011) – Wide Dynamic Range solution

> ARTPEC-5 (2013) – Forensic Capture

> ARTPEC-6 (2017) – Security

> ARTPEC-7 (2019) – LightFinder 2.0

> ARTPEC-8 (2021) – Deep learning on the edge

> ARTPEC-9 (2023) – … 

Axis ARTPEC Overview
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> Ensuring that the hardware design fulfills the 

requirements

> Predominantly performed before tape-out

– RTL

– Netlists

– UPF (power intent)

> Verification vs. test in the context of ASIC

Hardware Verification
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> Same end objective

> RTL is similar to software

> However, hardware differs in that:

– Very expensive to fix bugs after tape-out

– Low abstraction level

– Inherently parallel

– Large state space

Hardware Verification vs. Software Testing
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> Ideal world:

– Complete

– Unambiguous

– Consistent

– Appropriate level of detail

> Reality:

– Napkin sketches, gossip at the coffee machine, …

– Natural Language

– Formal or informal

– Models

– Executable or not

– Bit exact or not

Requirements Specifications
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> Functional Requirements

– Specifies the behavior

> Non-functional requirements

– Performance

– Reliability

– Security

– Safety

– …

Types of Requirements
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> Larger and more complicated designs

> More elaborate non-functional requirements

– Clock gating

– Power gating

– Security

– Safety

– …

> Stricter project deadlines

> Increased costs for tape-outs

Verification Complexity is Increasing



www.axis.com

Source:
Wilson Research Group and Siemens EDA, 2022 Functional Verification Study

> 50%-60% median ASIC project time spent in verification

> Mean peak number of ASIC engineers:

– 50% increase in design engineers since 2007

– 145% increase in verification engineers since 2007

> 76% ASICs require 2 or more respins

> Mask costs (vs 28nm):

– 12nm 2.5X

– 5nm 15X

– 3nm 25X

Some Data
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> Work hierarchically

> Minimize overlap in effort

– Horizontally

– Vertically

> Use the best technique for each problem

– Simulation

– Formal

– Specialized tools

> Re-use whenever possible

Dealing with Verification Complexity
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When is Verification Done?
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> Dynamic Techniques

– Simulation

– Emulation and FPGA Prototyping

> Static Techniques

– Structural checks

– Formal verification

Verification Techniques
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> Design Features

– Synthesizable

– Extends on Verilog

> Verification Features

– Classes

– Constraints

– Coverage

– Assertions

> Developed by the Accellera System Initiative

> Std IEEE 1800-2017

SystemVerilog
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> Execute in a software environment

> Discrete event simulation

> Four valued logic

– 0, 1, X, Z

> Performed on RTL or Netlist

– RTL – Cycle behavior

– Netlist – With or without timing

> Simulator can integrate other languages

– Natively (VHDL, SystemC)

– PLI or DPI

SystemVerilog Simulation
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> Instantiates the design under test (DUT)

> Facilitates simulating the DUT

> Models the environment of the DUT

– Drives inputs

– Monitors outputs

> Does not have to be synthesizable

Test Benches
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Modeling the Environment

> Model what is outside the DUT

– Other blocks on the chip

– External devices

> Model all legal behavior according to 

the specification of the interfaces

> Model in layers

– Handle complexity

– Facilitate reuse



Coverage Driven 

Constrained Random 

Verification
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Coverage Driven Constrained Random Verification

DUT

0111001001

0100100010

0100010010

0010101011

1000110100

1101010010

1001010101

0010101011

Result

op ∈ [ ld, st, mv ]

x > 0 ∧ x < 4096

a = 2 ✕ b

Constraints

1101001001

0101000100

1100010010

0010101010

1110011001

0010010010

1001010101

0010101011

Stimuli

Checkers

Coverage
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> Defines legal values

> Declarative

> Compact

– loops, conditionals, set operators, etc.

> Constraint blocks are class members

> Solver find random solutions satisfying 

the constraints

SystemVerilog Constraints
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constraint c_x { x inside {[2:12]}; }

Constraints Example

rand logic [3:0] x;
rand logic [3:0] y;

constraint c_y { y < 14; }

constraint c_sum { x + y < 21; }

constraint c_x_mod { x % 8 != 0; }
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> Model the input to the DUT as random variables

– Configuration and data

– Structure using object-orientation

– Consider reuse of parts

> Express legal stimuli using constraints

> Abstract low-level stimuli when appropriate

– To simplify constraints

– To enable us to randomize interesting cases

– Randomize high-level “knobs” and map to concrete stimuli

> Appropriate granularity of randomization

– Randomize at once or sequence the randomizations 

– Tradeoff between expressiveness and performance

Modeling Stimuli
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> Random distribution is rectangular by default

> In many cases, we need other random 

distributions to hit all interesting cases

> Define alternative sets of constraints

– Use subclasses

> Add constraints to limit the solution space

> Add dist constraints to control random 

distribution of a variable

Controlling Random Distribution
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Distribution Constraint Example

constraint c_d {
y dist { [0:4] := 1,

5   := 5,
[6:9] := 2 } 

}
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> Check that the DUT behaves correctly

> Passive and independent of how the test 

drives the stimuli

> Handle any legal stimuli

> Can be split into multiple parts

– Check different aspects

– Check at different abstraction levels

Checkers
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Reference Models

> Check by score boarding the output 

from the DUT against a reference 

model

> Abstraction level may vary

– Cycle exact or transaction level

> Accuracy may vary

– Bit exact or approximative
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> Primary metric for measuring completeness

> Two main types:

– Code Coverage

– Functional Coverage

> Collected during simulation by the simulator

> Analyzed to determine which aspects have 

not been fully verified yet

Coverage
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> Implicit

> Based on the code

> Different types:

– Line Coverage

– Branch Coverage

– Toggle Coverage

– Condition Coverage

– FSM Coverage

Code Coverage
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> Explicit

> Based on specification

> Defines interesting cases

> Sample values during simulation:

– Configuration

– Input data

– Output data

– Internal state

– Combinations of the above

> Use knowledge about the design

> Consider observability

Functional Coverage
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covergroup cg_upsamp_cfg;

cp_subsamp: coverpoint subsamp {
bins jpeg       = {k_jpeg};
bins h26x       = {k_h26x};
bins nnv = {k_nnv};
illegal_bins ib = default;

}

cp_xs: coverpoint xs {
bins min         = {       32};
bins max         = {     2048};
bins xsize[ 8]   = {[32:2048]};
illegal_bins bad = default;

}

cp_ys: coverpoint ys {
bins min         = {       32};
bins max         = {     8192};
bins ysize[16]   = {[32:8192]};
illegal_bins bad = default;

}

cc_ss_xs : cross cp_subsamp, cp_xs;

cc_ss_ys : cross cp_subsamp, cp_ys;

endgroup: cg_upsamp_cfg;

Functional Coverage Example
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Coverage Reports
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Closing Coverage

Run 

Simulations

Analyze 

Results

Update 

Stimuli 

and/or 

Coverage

Goal

Reached?

Yes

No
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> Framework for building coverage driven 

constrained random test benches

> Consists of a class library

> Std IEEE 1800.2

> Amalgamation of several previous 

competing frameworks

Universal Verification Methodology



www.axis.com

> Test benches are complex software systems

> Large amount of code

> Many test benches for a chip

> Code reuse is essential

– Across similar test benches – Horizontal

– Across hierarchy levels – Vertical

– Across iterations of the chip

Code Reuse



Formal Verification
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Formal Verification

> Use of tools that analyze the space of 

all possible behaviors of a design

> Excellent complement to simulation 

for selected problems

> Complexity often an issue for real 

world designs
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> Verification is an essential part of developing 

integrated circuits

> Active area

– New techniques

– New tools

> Requires both hardware and software 

knowledge

Summary
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AI Software

Machine Learning Algorithms

Image Quality Radar

Audio Quality Lidar

Supply Chain Management Audio

UX Design Firmware

Electronics Deep Learning

ASIC Image Processing

Testing Analytics

Mechanics Computer Vision


