
www.axis.com

Introduction to
Hardware
Verification.
Lars Viklund, ASIC Verification Manager, Axis Communications

16 November 2022

ASIC Development at

Axis Communications

www.axis.com

> Leader in network video surveillance

> Swedish company

> Part of Canon group

> About 4000 employees worldwide

Axis Communications

www.axis.com

> Long history of chip development

– TGA/CGA – Printer connectivity

– ETRAX – SoC for network connected devices

– ARTPEC – Network video

> Why in house chip development?

– Differentiation

– Optimization for application

– Access to technology

– Unit cost

Axis ASIC Development

www.axis.com

> Each generation offers more:

– features

– processing power

– memory bandwidth

> ARTPEC-1 (1999) – First chip for network video

> ARTPEC-2 (2003) – MPEG encoding

> ARTPEC-3 (2007) – One chip network camera

> ARTPEC-4 (2011) – Wide Dynamic Range solution

> ARTPEC-5 (2013) – Forensic Capture

> ARTPEC-6 (2017) – Security

> ARTPEC-7 (2019) – LightFinder 2.0

> ARTPEC-8 (2021) – Deep learning on the edge

> ARTPEC-9 (2023) – …

Axis ARTPEC Overview

Overview of

Hardware Verification

www.axis.com

Digital ASIC Development Flow

Chip

Masks

Netlist

RTL Code

Specification

www.axis.com

> Ensuring that the hardware design fulfills the

requirements

> Predominantly performed before tape-out

– RTL

– Netlists

– UPF (power intent)

> Verification vs. test in the context of ASIC

Hardware Verification

www.axis.com

> Same end objective

> RTL is similar to software

> However, hardware differs in that:

– Very expensive to fix bugs after tape-out

– Low abstraction level

– Inherently parallel

– Large state space

Hardware Verification vs. Software Testing

www.axis.com

> Ideal world:

– Complete

– Unambiguous

– Consistent

– Appropriate level of detail

> Reality:

– Napkin sketches, gossip at the coffee machine, …

– Natural Language

– Formal or informal

– Models

– Executable or not

– Bit exact or not

Requirements Specifications

www.axis.com

> Functional Requirements

– Specifies the behavior

> Non-functional requirements

– Performance

– Reliability

– Security

– Safety

– …

Types of Requirements

www.axis.com

> Larger and more complicated designs

> More elaborate non-functional requirements

– Clock gating

– Power gating

– Security

– Safety

– …

> Stricter project deadlines

> Increased costs for tape-outs

Verification Complexity is Increasing

www.axis.com

Source:
Wilson Research Group and Siemens EDA, 2022 Functional Verification Study

> 50%-60% median ASIC project time spent in verification

> Mean peak number of ASIC engineers:

– 50% increase in design engineers since 2007

– 145% increase in verification engineers since 2007

> 76% ASICs require 2 or more respins

> Mask costs (vs 28nm):

– 12nm 2.5X

– 5nm 15X

– 3nm 25X

Some Data

www.axis.com

> Work hierarchically

> Minimize overlap in effort

– Horizontally

– Vertically

> Use the best technique for each problem

– Simulation

– Formal

– Specialized tools

> Re-use whenever possible

Dealing with Verification Complexity

www.axis.com

When is Verification Done?

www.axis.com

> Dynamic Techniques

– Simulation

– Emulation and FPGA Prototyping

> Static Techniques

– Structural checks

– Formal verification

Verification Techniques

www.axis.com

> Design Features

– Synthesizable

– Extends on Verilog

> Verification Features

– Classes

– Constraints

– Coverage

– Assertions

> Developed by the Accellera System Initiative

> Std IEEE 1800-2017

SystemVerilog

www.axis.com

> Execute in a software environment

> Discrete event simulation

> Four valued logic

– 0, 1, X, Z

> Performed on RTL or Netlist

– RTL – Cycle behavior

– Netlist – With or without timing

> Simulator can integrate other languages

– Natively (VHDL, SystemC)

– PLI or DPI

SystemVerilog Simulation

www.axis.com

> Instantiates the design under test (DUT)

> Facilitates simulating the DUT

> Models the environment of the DUT

– Drives inputs

– Monitors outputs

> Does not have to be synthesizable

Test Benches

www.axis.com

Modeling the Environment

> Model what is outside the DUT

– Other blocks on the chip

– External devices

> Model all legal behavior according to

the specification of the interfaces

> Model in layers

– Handle complexity

– Facilitate reuse

Coverage Driven

Constrained Random

Verification

www.axis.com

Coverage Driven Constrained Random Verification

DUT

0111001001

0100100010

0100010010

0010101011

1000110100

1101010010

1001010101

0010101011

Result

op ∈ [ld, st, mv]

x > 0 ∧ x < 4096

a = 2 ✕ b

Constraints

1101001001

0101000100

1100010010

0010101010

1110011001

0010010010

1001010101

0010101011

Stimuli

Checkers

Coverage

www.axis.com

> Defines legal values

> Declarative

> Compact

– loops, conditionals, set operators, etc.

> Constraint blocks are class members

> Solver find random solutions satisfying

the constraints

SystemVerilog Constraints

www.axis.com

constraint c_x { x inside {[2:12]}; }

Constraints Example

rand logic [3:0] x;
rand logic [3:0] y;

constraint c_y { y < 14; }

constraint c_sum { x + y < 21; }

constraint c_x_mod { x % 8 != 0; }

www.axis.com

> Model the input to the DUT as random variables

– Configuration and data

– Structure using object-orientation

– Consider reuse of parts

> Express legal stimuli using constraints

> Abstract low-level stimuli when appropriate

– To simplify constraints

– To enable us to randomize interesting cases

– Randomize high-level “knobs” and map to concrete stimuli

> Appropriate granularity of randomization

– Randomize at once or sequence the randomizations

– Tradeoff between expressiveness and performance

Modeling Stimuli

www.axis.com

> Random distribution is rectangular by default

> In many cases, we need other random

distributions to hit all interesting cases

> Define alternative sets of constraints

– Use subclasses

> Add constraints to limit the solution space

> Add dist constraints to control random

distribution of a variable

Controlling Random Distribution

www.axis.com

Distribution Constraint Example

constraint c_d {
y dist { [0:4] := 1,

5 := 5,
[6:9] := 2 }

}

www.axis.com

> Check that the DUT behaves correctly

> Passive and independent of how the test

drives the stimuli

> Handle any legal stimuli

> Can be split into multiple parts

– Check different aspects

– Check at different abstraction levels

Checkers

www.axis.com

Reference Models

> Check by score boarding the output

from the DUT against a reference

model

> Abstraction level may vary

– Cycle exact or transaction level

> Accuracy may vary

– Bit exact or approximative

www.axis.com

> Primary metric for measuring completeness

> Two main types:

– Code Coverage

– Functional Coverage

> Collected during simulation by the simulator

> Analyzed to determine which aspects have

not been fully verified yet

Coverage

www.axis.com

> Implicit

> Based on the code

> Different types:

– Line Coverage

– Branch Coverage

– Toggle Coverage

– Condition Coverage

– FSM Coverage

Code Coverage

www.axis.com

> Explicit

> Based on specification

> Defines interesting cases

> Sample values during simulation:

– Configuration

– Input data

– Output data

– Internal state

– Combinations of the above

> Use knowledge about the design

> Consider observability

Functional Coverage

www.axis.com

covergroup cg_upsamp_cfg;

cp_subsamp: coverpoint subsamp {
bins jpeg = {k_jpeg};
bins h26x = {k_h26x};
bins nnv = {k_nnv};
illegal_bins ib = default;

}

cp_xs: coverpoint xs {
bins min = { 32};
bins max = { 2048};
bins xsize[8] = {[32:2048]};
illegal_bins bad = default;

}

cp_ys: coverpoint ys {
bins min = { 32};
bins max = { 8192};
bins ysize[16] = {[32:8192]};
illegal_bins bad = default;

}

cc_ss_xs : cross cp_subsamp, cp_xs;

cc_ss_ys : cross cp_subsamp, cp_ys;

endgroup: cg_upsamp_cfg;

Functional Coverage Example

www.axis.com

Coverage Reports

www.axis.com

Closing Coverage

Run

Simulations

Analyze

Results

Update

Stimuli

and/or

Coverage

Goal

Reached?

Yes

No

www.axis.com

> Framework for building coverage driven

constrained random test benches

> Consists of a class library

> Std IEEE 1800.2

> Amalgamation of several previous

competing frameworks

Universal Verification Methodology

www.axis.com

> Test benches are complex software systems

> Large amount of code

> Many test benches for a chip

> Code reuse is essential

– Across similar test benches – Horizontal

– Across hierarchy levels – Vertical

– Across iterations of the chip

Code Reuse

Formal Verification

www.axis.com

Formal Verification

> Use of tools that analyze the space of

all possible behaviors of a design

> Excellent complement to simulation

for selected problems

> Complexity often an issue for real

world designs

www.axis.com

> Verification is an essential part of developing

integrated circuits

> Active area

– New techniques

– New tools

> Requires both hardware and software

knowledge

Summary

www.axis.com

AI Software

Machine Learning Algorithms

Image Quality Radar

Audio Quality Lidar

Supply Chain Management Audio

UX Design Firmware

Electronics Deep Learning

ASIC Image Processing

Testing Analytics

Mechanics Computer Vision

