6. Prototyping new instructions

* Motivation

 Introduction to motion estimation and SAD
* Senior assembly code for SAD

* New Instruction selection for Senior

 Instruction set simulator basics

« Examples

We are considering implementing new

instructions...
How much speedup How much does
In a real algorithm? it cost?

Other aspects:

Energy efficiency?

Memory usage?
Register pressure?
Compilation?

Accelerating an Application by
adding new instructions

« ldentify kernel components (profiling)

* Investigate If kernel can be accelerated at a
reasonable hardware cost

Example - Accelerating an FFT

x(0) © (O X(0)
X(4) W”O ‘“'0 X(1)
x(2) O QA"‘\va (O X(2)
x(6) O Wy 0‘-0« m ‘v’o X(3)
x(1) O 0“" AQ X(4)
X(5) 0 .A.‘WA‘A‘. X(5)
IOEEINE0"0 SI/AN

x(7) O Wy 00 A. C =0 X(7)

-1

Implementing Complex Butterfly

——————————————————————————

Behavioral description:

— OQOutputlReal = BR + (AR*CR - AI*CI);

— QOutputllmag = BI + (AR*CI + AI*CR);

— Output2Real = BR - (AR*CR - AI*CI);

— OQOutput2lmag = BI - (AR*CI + AI*CR);
More than 10 instructions using MAC

- 4 MUL, 6 ADD

Check how many butterflies to be computed ?
Huge runtime cost ?

What kind of hardware do we need to reduce the
runtime cost to 1 instruction / butterfly ?

Acceleration by CMAC

OPC=CR+3jCTI

OPA=AR+jAI
1 AR
® ®
~—o ° ° AT
® ® N CR
A 4 Py CI
A 4 A 4 A A 4 A\ 4 A\ 4
NxN NxN NxN NxN
MUL MUL MUL MUL
RMR IMI RMI IMR
‘ADD/SUB:V ‘ADD/SUE"
2Nb 2Nb
BR
®
BI

A A 4
I ADD

\/

2Nb

suB

2Nb

VIVIVIV

ACRRl

Re output]
A

y

VvV V¥V VV%*
<7

2Nb

VIVIVIV

ACIRl

Im output"

Other possible ASIP
extensions

Bit manipulation instructions
Cryptographic/security
Memory copying
Vector/Matrix manipulation

etc...

Our Application in Lab-4
(Motion Estimation)

e The intuition - Simple video encoder
— Encode first image as a JPEG image

— Calculate the difference between the
current image frame and the previous
image frame.

— JPEG encode the difference

Sample Video Sequence

F(1)-F(0)

10

Our Application
(Motion Estimation)

« More advanced video encoder
— Encode first image as a JPEG image
— Divide the second image into blocks

— Find where each block is located in the first frame
(motion estimation)

— Encode motion information

— Encode difference between motion compensated image
and current image as a JPEG image

11

Motion estimation

12

Vectors

F(1)-M(0)

error

13

How to do Motion Estimation?

e For each block in the current image / frame,
find the most similar looking block in the

previous image
e What is the most similar looking block?
- The block with the least difference
- One metric: Sum of absolute difference
(SAD)

14

Block Search using Sum of
Absolute Difference (SAD)

New frame Old frame

The sum of the absolute
difference is 4

Block to search
for in old frame

Absolute difference
between new and .
old block

The sum of the absolute
difference is 12

15

Pseudo code for Motion Estimation

for each block in the image{ // 4x4 blocks
best_sad = Inf;
for each candidate position{
sad = compare_blocks(candidate_block, target_block);
if (sad < best_sad) {
best_sad = sad;
best_block = candidate_block; }
}
output_position(best_block);
}
compare_blocks(a,b){
sum = 0;
for each pixel p { // 16 pixels
difference = a[p] - b[pl;
sum += abs(difference);

}

return sum;

16

Assembly Code for SAD Kernel

displacement vector

repeat sad kernel end, 16 ///////; 0
sad kernel start ar3 1
1d0 r0, (ar3++) ; Load displacement in image %
nop 12

1d1 r1, (ar0,r0) ; Load pixel in new image

1d0 r2, (arl,r0) ; Load pixel in original image

nop

sub rl,rl,r2 ; Calculate difference

abs rl,rl ; Take absolute value

arQ

add r4,rd4,rl ; Sum of absolute difference
sad kernel end

new block old block

arl

What to Accelerate Here?

Could accelerate sub, abs
— Absolute difference
Could accelerate sub, abs, and add
- SAD
Could accelerate |1dO and Id1, sub, abs, and add
— SAD with value loading
Could accelerate 1d0O, 1d0O, Id1, sub, abs, and add
— SAD with value loading and pixel offset
— Would need dual port memory for memaO!
e Probably not a good idea...

 Deterministic speedup
« Could be estimated without simulation

18

What about the Loop?

e Could do early abort if we have
found a block which is obviously
worse than the best block so far

« Data dependent speedup
« Hard to estimate without simulation

19

Instruction Set Simulators

e Program flow for an instruction set simulator
- While there are no errors:
e Update PC
e Load instruction and decode it
e Execute instruction
— If error: Show debug information

e How to model pipeline effects?

20

Pipeline Accurate Simulation

e A pipeline accurate simulator is cumbersome to
write and verify

- |dO ro,(ar3++)
— add r5,r5,r0; Not allowed due to the pipeline

e We would like to check for this without too much
effort...

21

Emulating Pipeline Effects:
the easy way

« uintl6 trf[32];
— The register file

 Intrf_busy[32];
— If 0, access ok

— If not 0, access iIs not ok

— When updating the value of a register, update rf_busy([]
to an appropriate value depending on how the pipeline
looks like in the processor

Example: IdO rO,(ar3++) -> set rf_busy[0] = 2;

22

Modified Simulation Flow

e While there are no errors:
— Decrement rf_busy[] counters by 1
— Update PC
— Load instruction and decode it
— Execute instruction
e If error: Show debug information

23

Updating PC

e Need to take care about:
— Jumps
— Delay slots
- Loops

e You don’t have to modify this in the lab, but
please try to understand the code anyway

24

Decoding Instructions

/* Check top bits for the type of instruction */
switch(insn & 0xc0000000) {

case 0x00000000: insn moveloadstore (insn) ;
// This is a move, load or store instruction

break;

case 0x40000000: insn typeOl (insn);
// insn typeOl() will figure out what this is

break;

case 0x80000000: insn pfc(insn);
// Program Flow Control instruction

break;
case 0xc0000000: insn accelerated(insn);
break;

25

Executing Instructions

opa = get opa(insn) ;

opb get opb(insn) ;
switch (insn & 0x07800000) { // Look at the instruction word
case 0x00000000: result = opa & opb; break; // andn
case 0x01000000: result = opa | opb; break; // orn
case 0x02000000: result = opa ” opb; break; // xorn
default: sim warning("Unimplemented logic instruction") ;
return;

if(insn & 0x00800000) {
update flags(result);

set reg(get dreg(insn),result,0); // set reg updates rf busy!

26

Verification

e For lab-4, the result of “"sad.asm” with
accelerated instructions should be
identical to the result without
accelerated instructions

— (This might not be true for all ASIP
instructions)

27

Is it fast enough?

 You will gain a substantial speedup
e |s It worth the extra hardware cost?

28

Counting clockcycles

accel sad r4,r0

sub r0,r4,r5 b

Nr of nops "2 B

set reg(get dreg(insn),val,)

(will set rf busy for you)

cleared in sad.asm " i

Counting clockcycles NDC Je— J\ e %ﬂ

pipeline delay

P2 V4
repeat sad stop(’); ?

76 b r
- 30

fee ? bes+.7‘¢_l-

(R

Exercises!

31

The following function should be implemented on the Senior processor.

// matrixptr is in rO, vectorptr in r1l and resultptr in r2
function rotate_vector(matrixptr, vectorptr, resultptr)

A = dmO[matrixptr]
B = dmO[matrixptr+1]
C = dmO[matrixptr+2]
D = dmO[matrixptr+3]
repeat 50
X = dmO [vectorptr++]
Y = dmO[vectorptr++]
ROTATEDX = AxX+BxY
ROTATEDY = CxX+Dx*xY
dml[resultptr++] = ROTATEDX
dml[resultptr++] = ROTATEDY
endrepeat
endfunction
Constraints:

matrixptr, vectorptr, and resultptr are available in general purpose registers
when the function is called.

A, B, C. D. X. Y, ROTATEDX, and ROTATEDY are 16 bit fractional numbers.
You don’t need to worry about saturation and rounding in this exercise.

You may not add any ports or change the width of either DMO or DMI.

32

Tasks:

Your task 1s to create a special unit present in the pipeline of the Senior processor so
that the function ROTATE _VECTOR can be executed in less than 130 clock cveles. You will
also need to select suitable instructions to implement this function. You can assume
that the processor has the required program flow control and addressing modes required
to support this function.

a) Select a set of new instructions that will allow you to execute ROTATE_VECTOR in less
than 130 clock cycles and translate ROTATE_VECTOR into assembler. For each of vour
new instructions vou also need to describe any AGU or memory operation that it may
perform.

b) Draw a hardware schematic of your vector rotation unit. You should minimize the
amount of multipliers. You may also use as many gates, multiplexers and adders as you
want to (within reason).

¢) Draw a control table for your hardware where you include all instructions that you
selected 1n task a.

Note: In a real scenario vou would probably reuse some hardware mm the MAC unit
for the vector rotation instruction(s). For simplicity reasons we ignore this fact in this
exercise.

/X = dmO [vectorptr++]
Y = dmO[vectorptr++]
ROTATEDX = AxX+B*Y
ROTATEDY = CxX+D*Y

dml [resultptr++] = ROTATEDX
\dm1 [resultptr++] = ROTATEDY/

~

DMO ROT DM1

newX=DMO

Y=DMO0, X=newX

newX=DMO ROTX=AX+BY

Y=DMQ, X=newX ROTY=CX+DY

newX=DMO ROTX=AX+BY DM1=ROTX

Y=DMO, X=newX ROTY=CX+DY DM1=ROTY
ROTX=AX+BY DM1=ROTX
ROTY=CX+DY DM1=ROTY

DM1=ROTX

DM1=ROTY

48

34

/X = dmO [vectorptr++]
Y = dmO[vectorptr++]
ROTATEDX = AxX+B*Y
ROTATEDY = CxX+D*Y

dml [resultptr++] = ROTATEDX
\dm1 [resultptr++] = ROTATEDY/

~

[

DMO ROT DM1

newX=DMO

Y=DMO, X=newX

newX=DMO ROTX=AX+BY

Y=DMO, X=newX ROTY=CX+DY DM1=ROTX

newX=DMO ROTX=AX+BY DM1=ROTY

Y=DMO, X=newX ROTY=CX+DY DM1=ROTX
ROTX=AX+BY DM1=ROTY
ROTY=CX+DY DM1=ROTX

DM1=ROTY

48

35

49

DMO ROT DM1

newX=DMO

Y=DMO0, X=newX

newX=DMO tmp0=AX+BY

Y=DMO0, X=newX tmpl=CX+DY DM1=tmp0

newX=DMO tmp0=AX+BY DM1=tmpl
tmpl=CX+DY DM1=tmp0

DM1=tmpl

rotl: newX = dm0O[ar0++];

rot2: Y = dmO[ar0++|; X = newX;

rot3: tmpl = OpA¥X+O0pB*Y; newX = dm0[ar0++];
rotd: dmlfarl++| = tmp0; tmpl = OpA*X+0pB*Y; Y = dmO[ar0++]; X =

newx;

rot5: dmlfarl++| = tmpl; tmp0d = OpA*X+O0pB*Y; newX = dm0jar0++];
rot6: dmlfarl++| = tmp0; tmpl = OpA*X+O0pB*Y;

rotT: dmlfarl++| = tmpl;

36

The following assembly program will work:

rotate_vector:

1d
1d
1d
1d
move
move

rotl
rot2
rot3

r4,dmO [r0]
r5,dmO [rO+1]
r6,dmO [r0+2]
r7,dmO [r0+3]
arO,rl
arl,r2

; Prologue

rd,rb

repeat 49, endloop

rotéd
rotd
endloop:

rot6
rot7

ret

r6,r7
rd,rb

r6,r7 ; Epilogue

37

DMO

0 1 C1 0 1 /—C2
newx Y

Content of ALIGN: assign out[15:0] = in[30:151;

l_h_f' ’*j_/l
NS

ALIGN Insm | C1 | C2 | C3 | C4 | Ch

rotl 1 0 0 0 -

rot2 | 0 1 a1 o -

C3—\0 1/ N1 0/— Ca 3| 1|0l 1] 0] -
| | il |0 1] 010
b | b | t5 | 1| 0| 1| 0|1

ot | 0 0 0 1 i
rot? | 0] 0 0 1

The function FIR_3 is responsible for 70% of the time in a hypothetical application
running on the Senior processor. Your task is to evaluate the hardware cost of speeding
up this function by designing a custom instruction that is able to execute FIR_3 in
one clock cycle. Additionally, it is necessary to initialize the values used by the FIR_3
function by using the INITFIR_3 function. However, it is expected that the FIR_3
function will be executed around 1000 times as often as the INITFIR_3 function. This
means that the INITFIR_3 function does not need to execute quickly.

function FIR_3()
samples[2] = samples[1]
samples[1] = samples[0]
samples[0] = dmO[inputptr]
inputptr = inputptr + 1

tmp = O

tmp = tmp + samples[0] * coefficients[0]
tmp = tmp + samples[1] * coefficients[1]
tmp = tmp + samples[2] * coefficients[2]

dmi [outputptr] = SATURATE(tmp)
outputptr = outputptr + 1
endfunction

function INITFIR_3(vall, val2, val3, vald, valb)

samples[0] = O
samples[1] = 0
samples[2] = O

inputptr = vall
outputptr = val2

coefficients[0] = val3
coefficients[1] = vald
coefficients[2] = val5s

endfunction

39

Constraints:
e Function parameters are passed in general purpose registers
e samples contains 16 bit values in signed integer format

e coefficients contains 16 bit values in signed integer format

The tmp variable has a suitable number of guard bits.
e You don’t need to pipeline this unmt for maximum clock frequency.

e You should be able to issue one FIR_3() instruction every clock cycle.

Tasks:

Your task 1s to design and implement the function FIR_.3() as a special instruction on
the Senior processor. You also need to implement support for the INITFIR_3() function
and you will probably need to add a couple of instructions to do this.

a) Draw a hardware schematic of the modified parts of the pipeline. You don't need to
annotate bit widths. You don't need to annotate the contents of a SATURATE box.

b) Draw a control table for your hardware where you include a NOP instruction, the
FIR_3 instruction and the instructions necessary to implement INITFIR_3. You should
also write pseudo assembler code for INITFIR_3.

40

How to modify the pipeline:

You will need to modify the MAC unit and make sure that it can send the result back
to DM1. (There is no need to modify the AGU unit as the addressing used in this code
snippet are standard post increment addressing modes that any normal DSP processor

would have.)

Schematics

From DMO

:

g

Cb—\L‘Q/

S 04

==

Cc

Cc

Cc

From RF

C 04

:

10

%u

C 14

10

<

c 2

Co051 C152 C2

K/\) ot _

SAT

To DM1

41

Control table

Operation Ca | Cb | Ce
NOP - 010
CLEARSAMPLES 1 1 0
MOVE COEFFO, REG | - 0 1
FIR_3 0 1 0
INIT_FIR:

CLEARSAMPLES

CLEARSAMPLES

CLEARSAMPLES

move COEFFO, Rb . valb

move COEFFO, R4 . vald

move COEFFO, R3 » val3

move ARO, R1i » In the AGU

move AR1, R2 » In the AGU

ret

42

