
6. Prototyping new instructions

1

• Motivation

• Introduction to motion estimation and SAD

• Senior assembly code for SAD

• New instruction selection for Senior

• Instruction set simulator basics

• Examples

How much does

it cost?

2

How much speedup

in a real algorithm?

We are considering implementing new
instructions…

Other aspects:

Energy efficiency?

Memory usage?

Register pressure?

Compilation?

...

...

Accelerating an Application by
adding new instructions

• Identify kernel components (profiling)

• Investigate if kernel can be accelerated at a

reasonable hardware cost

3

Example – Accelerating an FFT

4

0

NW

1

0

NW

1

0

NW

1

0

NW

1

0

NW

1
2

NW

1

0

NW

1
2

NW

1

1

NW

1

0

NW

1
2

NW

1
3

NW

1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Implementing Complex Butterfly

• Behavioral description:

– Output1Real = BR + (AR*CR – AI*CI);

– Output1Imag = BI + (AR*CI + AI*CR);

– Output2Real = BR – (AR*CR - AI*CI);

– Output2Imag = BI – (AR*CI + AI*CR);

• More than 10 instructions using MAC
– 4 MUL, 6 ADD

• Check how many butterflies to be computed ?

• Huge runtime cost ?

• What kind of hardware do we need to reduce the
runtime cost to 1 instruction / butterfly ?

5

A

B

C

B+AC

B-AC

6

NxN

MUL

2Nb

2Nb

NxN

MUL

ADD/SUB

ADD

RMR IMI

NxN

MUL

2Nb

2Nb

NxN

MUL

ADD

RMI IMR

AR

AI

CR

CI

OPA=AR+jAI OPC=CR+jCI

Re output Im output

ACRR ACIR

BR

BI

ADD/SUB

2Nb 2Nb

SUB SUB

Acceleration by CMAC

Other possible ASIP
extensions

• Bit manipulation instructions

• Cryptographic/security

• Memory copying

• Vector/Matrix manipulation

• etc…

7

Our Application in Lab-4
(Motion Estimation)

• The intuition - Simple video encoder

– Encode first image as a JPEG image

– Calculate the difference between the
current image frame and the previous
image frame.

– JPEG encode the difference

8

Sample Video Sequence

9

F(0) F(1)

10

JPEGJPEG

F(0) F(1)

+
-

F(1)-F(0)

…

Our Application
(Motion Estimation)

• More advanced video encoder
– Encode first image as a JPEG image

– Divide the second image into blocks

– Find where each block is located in the first frame

(motion estimation)

– Encode motion information

– Encode difference between motion compensated image

and current image as a JPEG image

11

Motion estimation

12

F(n-1) F(n)

13

JPEGJPEG

F(0) F(1)

+
-

F(1)-M(0)

…

MOCOM

M(0)

vectors error

How to do Motion Estimation?

• For each block in the current image / frame,
find the most similar looking block in the
previous image

• What is the most similar looking block?

– The block with the least difference

– One metric: Sum of absolute difference
(SAD)

14

Block Search using Sum of
Absolute Difference (SAD)

15

Pseudo code for Motion Estimation

for each block in the image{ // 4x4 blocks

best_sad = Inf;

for each candidate position{

sad = compare_blocks(candidate_block, target_block);

if (sad < best_sad) {

best_sad = sad;

best_block = candidate_block; }

}

output_position(best_block);

}

compare_blocks(a,b){

sum = 0;

for each pixel p { // 16 pixels

difference = a[p] - b[p];

sum += abs(difference);

}

return sum;

}

16

Assembly Code for SAD Kernel

repeat sad_kernel_end,16

sad_kernel_start

ld0 r0,(ar3++) ; Load displacement in image

nop

ld1 r1,(ar0,r0) ; Load pixel in new image

ld0 r2,(ar1,r0) ; Load pixel in original image

nop

sub r1,r1,r2 ; Calculate difference

abs r1,r1 ; Take absolute value

add r4,r4,r1 ; Sum of absolute difference

sad_kernel_end

17

ar0

ar1

ar3
0
1
2
3

12

new block old block

displacement vector

What to Accelerate Here?

• Could accelerate sub, abs

– Absolute difference

• Could accelerate sub, abs, and add

– SAD

• Could accelerate ld0 and ld1, sub, abs, and add

– SAD with value loading

• Could accelerate ld0, ld0, ld1, sub, abs, and add

– SAD with value loading and pixel offset

– Would need dual port memory for mem0!

• Probably not a good idea…

18

• Deterministic speedup
• Could be estimated without simulation

What about the Loop?

• Could do early abort if we have
found a block which is obviously
worse than the best block so far

19

• Data dependent speedup
• Hard to estimate without simulation

Instruction Set Simulators

• Program flow for an instruction set simulator

– While there are no errors:

• Update PC

• Load instruction and decode it

• Execute instruction

– If error: Show debug information

• How to model pipeline effects?

20

Pipeline Accurate Simulation

• A pipeline accurate simulator is cumbersome to
write and verify

– ld0 r0,(ar3++)

– add r5,r5,r0; Not allowed due to the pipeline

• We would like to check for this without too much
effort…

21

Emulating Pipeline Effects:
the easy way

• uint16_t rf[32];

– The register file

• int rf_busy[32];

– If 0, access ok

– If not 0, access is not ok

– When updating the value of a register, update rf_busy[]

to an appropriate value depending on how the pipeline

looks like in the processor

Example: ld0 r0,(ar3++) -> set rf_busy[0] = 2;

22

Modified Simulation Flow

• While there are no errors:

–Decrement rf_busy[] counters by 1

–Update PC

– Load instruction and decode it

–Execute instruction

• If error: Show debug information

23

Updating PC

• Need to take care about:

– Jumps

– Delay slots

– Loops

• You don’t have to modify this in the lab, but
please try to understand the code anyway

24

Decoding Instructions

/* Check top bits for the type of instruction */

switch(insn & 0xc0000000) {

case 0x00000000: insn_moveloadstore(insn);

// This is a move, load or store instruction

break;

case 0x40000000: insn_type01(insn);

// insn_type01() will figure out what this is

break;

case 0x80000000: insn_pfc(insn);

// Program Flow Control instruction

break;

case 0xc0000000: insn_accelerated(insn);

break;

}

25

Executing Instructions
opa = get_opa(insn);

opb = get_opb(insn);

switch (insn & 0x07800000) { // Look at the instruction word

case 0x00000000: result = opa & opb; break; // andn

case 0x01000000: result = opa | opb; break; // orn

case 0x02000000: result = opa ^ opb; break; // xorn

default: sim_warning("Unimplemented logic instruction");

return;

}

if(insn & 0x00800000) {

update_flags(result);

}

set_reg(get_dreg(insn),result,0); // set_reg updates rf_busy!

26

Verification

• For lab-4, the result of “sad.asm” with
accelerated instructions should be
identical to the result without
accelerated instructions

– (This might not be true for all ASIP
instructions)

27

Is it fast enough?

• You will gain a substantial speedup

• Is it worth the extra hardware cost?

28

29

accel_sad r4,r0

…

sub r0,r4,r5

set_reg(get_dreg(insn),val,)

(will set rf_busy for you)

Nr of nops

Set in sad.asm

cleared in sad.asm

Counting clockcycles

30

repeat_sad_stop();

pipeline delay

Counting clockcycles

Exercises!

31

2015/10/6 Tutorial - 6 32

33

34

DM0 ROT DM1

newX=DM0

Y=DM0, X=newX

newX=DM0 ROTX=AX+BY

Y=DM0, X=newX ROTY=CX+DY

newX=DM0 ROTX=AX+BY DM1=ROTX

Y=DM0, X=newX ROTY=CX+DY DM1=ROTY

ROTX=AX+BY DM1=ROTX

ROTY=CX+DY DM1=ROTY

DM1=ROTX

DM1=ROTY

48

35

DM0 ROT DM1

newX=DM0

Y=DM0, X=newX

newX=DM0 ROTX=AX+BY

Y=DM0, X=newX ROTY=CX+DY DM1=ROTX

newX=DM0 ROTX=AX+BY DM1=ROTY

Y=DM0, X=newX ROTY=CX+DY DM1=ROTX

ROTX=AX+BY DM1=ROTY

ROTY=CX+DY DM1=ROTX

DM1=ROTY

48

36

DM0 ROT DM1

newX=DM0

Y=DM0, X=newX

newX=DM0 tmp0=AX+BY

Y=DM0, X=newX tmp1=CX+DY DM1=tmp0

newX=DM0 tmp0=AX+BY DM1=tmp1

tmp1=CX+DY DM1=tmp0

DM1=tmp1

49

37

38

39

2

40

41

42

