TSEA26 Tutorial 3. MAC design

Frans Skarman ${ }^{1}$

November 24, 2021
${ }^{1}$ based on material by Dake Liu, Olle Seger, Andreas Ehliar, and Jian Wang

MAC introduction

- Most important HW module in DP of any DSP Processor
- Supports Algorithms like
- Convolution (most frequently used in DSP Algorithms)
- Filtering, FIR, IIR, Auto-Correlation, Cross-Correlation
- Transforms (FFT, DCT etc)
- Double Precision Arithmetic Operations

MAC Building blocks

- Multiplier
- Long adder
- Accumulator Registers (ACR)
- Multiplexers
- Functions (e.g. Rounding, Scaling, Saturation, Flags etc)

Multipliers

We only use signed mulitpliers. Signed values are sign extended, unsigned values are zero extended

MAC Design: A case study

Design a MAC unit with the following operations

- Integer / Fractional multiplication (16 x 16)
- Signed / Unsigned multiplication
- Convolution with 8 guards and initialization
- Round
- Saturation
- 32 bits Long Plus and Minus
- 32 bits Long operation: ABS
- There are plenty of ways to do this. This is one example

Basic design

With guard bits

- G8 block adds 8 guard bits to input using sign extension

Load to ACR

- Load guard, ACRH or ACRL from RF
- Also allows load of OPA \rightarrow ACRH, OPB \rightarrow ACRL
- Auto-set G when loading ACRH
- For clarity these changes are implicit in the rest of the slides

ACR1 and ACR2 to support long addition

Signed and unsigned multiplication

- Add sign extension discussed in the beginning
- Requires fewer "additional" guard bits

Fractional multiplication

Fractional multiplication "moves" fractional point 16 bit signed fractional multiplication:

$$
x \cdot 2^{15} \cdot y \cdot 2^{15}=(x \cdot y) \cdot 2^{15+15}=(x \cdot y) \cdot 2^{30}
$$

Normally we assume the fixed point in ACR to be at bit 31
\Rightarrow We need to shift the result

Fractional multiplication

We'll build this this into a I/F block

Fractional multiplication

Rounding

Recall tutorial 1. Using method 2 here

Method 2:

Rounding

Saturation

- From tutorial 1
- Check guard bits for overflow

Rounding

Subtraction, absolute value etc.

Same as for ALUs, See tutorial 2 for details.

Exercises

- Exercise 3.1 and 3.3 for "normal mac design".
- Exercise 3.4, 3.2 and 3.5 for complex valued MAC

