
TSEA26 Tutorial 2. Arithmetic Logic Unit

Frans Skarman

November 17, 2021

More lab info

Suggested schedule

I Session 1–2: Lab 1

I Session 3–5: Lab 2

I Session 6–8: Lab 3

I Session 9–10: Lab 4

Remote work

I ssh -YC ssh.edu.liu.se or thinlinc

I Then ssh -YC muxenX-0YY (select muxen 1 or 2 + computer)

Arithmetic and Logic Unit (ALU)

I Key component in a processor datapath

I Usually receives all operands from register file or immediate values

I Latency 1 clock cycle

I Usually 1 guard bit

Key components of an ALU

I Arithmetic unit (Add, Sub, Min, etc.)

I Logic unit (And, OR, etc.)

I Shifter (lsr, asl, etc.)

ALU overview

Example: Design a small ALU

OP Operation Saturation Update flags
0 A + B yes yes
1 A + B no yes
2 A + B + Cin yes yes
3 A + B + Cin no yes
4 A− B yes yes
5 A− B no yes
6 compare A and B yes yes
7 |A| – yes
8 −A – yes
9 (A + B)/2 – yes
10 NOP – no

Required computations

Combined hardware

Control signals

OP C1 C2 C3 C4 C5
0 norm norm add sat 1
1 norm norm add trunc 1
2 norm norm carry sat 1
3 norm norm carry trunc 1
4 norm neg neg trunc 1
5 norm neg neg sat 1
6 norm neg neg - 1
7 abs zero abs trunc 1
8 neg zero neg trunc 1
9 norm norm neg half 1
10 - - - - 0

Black boxes

// Flags

always @(posedge clk) begin

if (c5) begin

C <= Cout;

Z <= R == 0;

N <= R[15];

V <= (S[16] != S[15]);

end

end

assign R = S[16:1] // ASR

assign R = S[15:0] // Trunc

// sat

always @(*) begin

if (S[16]==S[15])

R <= S[15:0];

else if (S[16]==0)

R <= 16’h7fff;

else

R <= 16’h8000;

end

About Lab 2

I Implement (parts of) ALU and MAC unit for senior

I Use Verilog or VHDL

I Skeleton files provided in lab2-3

I All info in lab manual
I Chapter 0 covers useful commands etc.
I Chapter 2 covers lab instructions
I Read through this carefully

About Lab 2

Files to write:
I Hardware (VHDL/Verilog)

I saturation.vhd
I mac dp.vhd
I adder ctrl.vhd
I min max ctrl.vhd
I Or corresponding verilog

I Software (Assembly)
I saturation.asm
I rounding vector.asm
I alu test.asm

Lab 2 Workflow

1. Run SW in srsim to get reference output

2. Run SW in simulated HW using vsim

3. Compare output

4. Check coverage. Are you testing all HW?

Steps 1–3 are handled automatically by Makefile (I think)

Lab 2 - Hints

It is very important that your (synthesizable) code in Lab 2 does not contain any
latches

When maximizing your coverage, make sure that you actually output the result of
what you are testing

The following code will get coverage for both the mulss and muluu instruction but will
not actually verify that the result is correct of mulss

mulss r0 ,r1,r2 ; Test mulss

muluu r0 ,r1,r2 ; Test muluu

call outputacr_to_testport

Lab 2 – Synthesis

I To synthesize your design, you need to login to

I only-da.ad.liu.se (for license reasons)

I Information on lab web page

I Make sure you use the latest version of lab 2-3-files (or you may need to
change)

I The latest lab manual contains updated information

Exercises

Exercises 1, 2, 3, and 4 from ALU exercises

