
   // function filter()

   clear ACR           

   set   AR0, r0

   set   AR1, r1

   repeat 30                     

   mac   ACR,DM0[AR0++],DM1[AR1++] 

   sat   ACR,ACR

   move  r2,ACR[31:16]

   move  r3,ACR[15:0]

   clear ACR

   set   AR0,r0

   set   AR1,r1

   repeat 30                     

   diffacc ACR0,DM0[AR0++],DM1[AR1++] 

   move  r4,ACR[31:16]

   move  r5,ACR[15:0]

   ret

 

   reg [31:0] result;

 

   always @* begin

      case(ex_ctrl`LU)

        `LOGIC_AND:   result <= real_a & real_b;

        `LOGIC_OR:   result <= real_a | real_b;

        `LOGIC_XOR:   result <= real_a ^ real_b;

        `LOGIC_NOR:   result <= ~(real_a | real_b);

        `LOGIC_EXT8:  result <= {{24{real_a[7]}}, real_a[7:0]};

        `LOGIC_EXT16: result <= {{16{real_a[15]}}, real_a[15:0]};

        default:     result <= 32'hxxxxxxxx;

      endcase

   end

 

   always @(posedge clk) begin

      result_logic <= result;

      if(!ex_ctrl`LU_OP) begin

         result_logic <= 0;

      end

   end
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0 About the Exercises

The exercises in this book are meant to show fairly realistic situations. While it is seldom
feasible to create an exercise which is fully realistic, it has been tried to create exercises
which contains situations that you could realistically expect to see in a real ASIP. Or for
that matter when designing an accelerator for a certain task in for example an FPGA.

Many of these exercises can be solved in different ways, particularly the intermediate and
challenging exercises. In the solution proposals, the aim is to provide a fairly realistic
solution proposal. For example, often long critical paths or solutions which would require
an awkward datapath pipeline are avoided. The hope is that this will lead to some more
interesting solution proposals which will allow you to learn a new trick or two. (However,
do not worry too much if you would not come up with these tricks yourself, as you typically
do not need to worry about for example the critical path on the exam.)

Feedback on these exercises, particularly any bugs you may have found are very welcome.

0.1 Notes About the C/Pseudo Code in the Exercises

C-like pseudo code is used in the exercises in this document. This is hopefully not a
problem as the C code is usually kept simple and should be easy to understand for anyone
who has taken an introductory course in C or C++. However, datatypes from stdint.h
are often used, which may not have been covered in such a course:

• int8 t: 8-bit signed integer

• int16 t: 16-bit signed integer

• int32 t: 32-bit signed integer

• uint8 t: 8-bit unsigned integer

• uint16 t: 16-bit unsigned integer

• uint32 t: 32-bit unsigned integer

(In essence, this is a way to guarantee that certain sizes are used, as C does not guarantee
that for example a short will always be 16 bits.)

9



CHAPTER 0. ABOUT THE EXERCISES

In these exercises it is assumed that two’s complement format will be used to store the
signed integers although the C standard does not offer such guarantees1.

0.2 On the Use of RTL Code

Note that RTL code, in the form of Verilog, has been used to explain certain parts of the
schematics that would be awkward to draw using schematic symbols.

It is encouraged to do the same while solving these exercises if you think a certain part
of the schematic is easier to explain using Verilog or VHDL. However, keep the following
in mind if you want to use Verilog/VHDL:

0.2.1 Syntax

When correcting the exam, the correct Verilog/VHDL syntax is in general not crucial.
However, there are a few situations where the syntax is quite important. The most
common example is the replication operator in Verilog.

// Correct attempt to check that x contains only ones:
if (x[4:0] == {5{1 ’ b1 }}) // This is using the replication

// operator
// Do something

// Incorrect attempt (This checks whether x holds the value
// of 1)
if (x[4:0] != 5’b1) // No replication operator here!

// In this case there will be points deducted since it is
// not possible to tell if you do not know Verilog syntax
// (not a big deal) or if you do not know that you are
// supposed to check that x has the value of 1 or 31...

// Correct (but is if x contains lots of ones)
if (x[4:0] == 5’ b11111 )

// Do something

If you are unsure about the syntax, please write a comment about what you actually
intend to do.

1Which can lead to disastrous results, see for example http://www.phrack.org/issues.html?issue=
60&id=10#article.
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CHAPTER 0. ABOUT THE EXERCISES

0.2.2 Hardware Multiplexing

If you use Verilog or VHDL you need to write it in such a way that the hardware mul-
tiplexing is obvious. For example, the following is a bad example of a design since the
hardware multiplexing is not obvious:

/* Create a simple ALU with add , subtract , xor and or */
reg [31:0] result ;
always @( posedge clk) begin : ALU

case(Ca)
0: result = A + B;
1: result = A - B;
2: result = A ˆ B;
3: result = A | B;

endcase
end

In the example above, it is not clear that the same adder can be used for the addition
and subtraction. Although a good synthesis tool will probably detect this, one of the
the goals of this course is to show that you understand the details of microarchitecture
design (such as hardware multiplexing), instead of relying on the tools to do it for you.
While the tools will probably do a good job in many cases, you will see in lab 2 that good
knowledge of hardware multiplexing can reduce the area and critical path of a design by
allowing you to redesign it in such a way that it is possible to do hardware multiplexing.

In contrast, if you want to create an ALU where hardware multiplexing is obvious, the
following would be a better example:

reg carry_in ;
always @* begin

if(Cb) begin
carry_in = 1;
op_b = B;

end else begin
carry_in = 0;
op_b = ˜B;

end
end

always @( posedge clk) begin
case(Cc)

0: result = A + op_b + carry_in ;
1: result = A ˆ B;
2: result = A | B;

endcase
end

11



CHAPTER 0. ABOUT THE EXERCISES

0.2.3 Clocked structures in HDL

Another detail that you need to be careful about is clocking. Historically, many students
that use VHDL or Verilog on the exam forget to indicate that a clock is used for registers
and flip-flops. So if you want to create a clocked structure (such as a flag register in an
ALU) please make sure that you actually indicate that a clock is used (for example by
using an always @(posedge clk) statement in Verilog).

12



1 Introductory Exercises

Exercise 1.1 (easy)

Draw the schematic of a simple computing module which should perform the following
tasks, depending on the value of the control signal C:

• C=0: Y = (A + B)/2

• C=1: Y = (A - B)/2

No special rounding is needed in this exercise. However, you are only allowed to use one
adder.

Exercise 1.2 (intermediate)

Write efficient assembler code for a DSP processor such as the Senior processor for a
32-tap FIR filter. The FIR filter should operate on a 1000 long vector located in memory
0. (You can assume that this vector begins with 31 zeros and ends with 31 zeros.). The
filter coefficients are stored in ROM0.

Exercise 1.3 (intermediate)

Write efficient assembler code for a DSP processor such as the Senior processor for the
following filter structure.

�
For a 5-tap filter it will be significantly faster to use an unrolled loop
and store intermediate values in registers rather than using a ring buffer
in memory.
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Round
Saturation

You can assume that the following instruction will handle output and inputs of samples:
in r0 ,0 x10 ; Fetch sample
out 0x11 ,r0 ; Output sample

14



2 Exercises for Arithmetic and Logic
Unit (ALU)

Exercise 2.1 (easy)

Design an arithmetic unit using minimal HW and implement the following functions.
Annotate your design clearly.

• OP1: A[3:0] + B[3:0] + Carry in

• OP2: Saturate(A[3:0] + B[3:0])

• OP3: Saturate(A[3:0] – B[3:0])

• OP4: if(A[3:0] ≥ B[3:0]) result ⇐ A else result ⇐ B;

Clearly specify all the black boxes. Operand A and B are signed numbers.

Exercise 2.2 (easy)

• OP0: RESULT = A + B + Carry in

• OP1: RESULT = A - B

• OP2: RESULT = ABS(B - A)

• OP3: RESULT = LEFTSHIFT(A, B[2:0]) (Shift A left by B[2:0] times)

• OP4: RESULT = RIGHTSHIFT(A, B[2:0]) (Shift A right by B[2:0] times (not arith-
metic shift))

Constraints:

• Overflow must be handled for ABS(B - A). It is up to you if you want to handle
overflow in any other case.

15



CHAPTER 2. EXERCISES FOR ARITHMETIC AND LOGIC UNIT (ALU)

• You should minimize the amount of hardware such as adders and shifters.

• A is 8 bits wide, B is 8 bits wide, Carry in is 1 bit wide. RESULT is 8 bits wide.

Exercise 2.3 (intermediate)

We have a processor with a pipeline where we can:

• Read out two operands from the register file and write one operand to the register
file, all at the same time

• Instead of reading out one of the operands you can choose to take a 16-bit immediate
from the instruction word

• We have 32 16-bit registers

• A conditional branch takes 3 clock cycles

• We have a repeat instruction

• We have only one load instruction of interest:
load Rd , DM0[AR0 ++] ; AR0 is set with the instruction

; set AR0 , Rs

• The store instruction works the same way:
store DM0[AR0 ++], Rs

• After a load instruction we must wait a clock cycle before we can use the result

Select an instruction set suitable for the following two functions and translate the functions
into assembler. Draw a schematic and a control table for the ALU.
// Maximum execution time: 105 clock cycles ( excluding ret insn)
int16_t dct_indata [32];
uint16_t find_maxabsval (void) // Return value should be in r0
{

uint16_t biggest = 0, b;
int16_t a;

for(int i=0; i < 32; i++){
a = dct_indata [i];
b = abs(a);
if(b > biggest ) biggest = b;

}
return biggest ;

}

16
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// Maximum execution time for update_statistics : 25 clock cycles
// (not including the RET instruction )
int64_t packet_ctr ;
void update_statistics ( int16_t length )
/* Length is in register r0 when this function is called */
{

packet_ctr += length ; // Hint: This is a signed computation !
}

Exercise 2.4 (challenging)

If you want a challenging bonus task: Would it be possible to create an ALU which
enables the find maxabsval function to execute in less than 80 clock cycles under the
constraints listed in exercise 2.

Would it be possible to do it in less than 50 clock cycles under the same constraints? If
not, what is the smallest change to the constraints that you would like to do in order to
run find maxabsval in less than 50 cycles?
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3 Execrcises for Multiply-and-Accumulate
(MAC) Unit

Exercise 3.1 (easy)

Design a MAC unit capable of the following operations:

OP0: No operation
OP1: ACR = 0
OP2: ACR = A * B (Fractional multiplication (signed))
OP3: ACR = A * B + ACR (Fractional multiplication (signed))
OP4: ACR = 1.25 * ACR (Scaling)
OP5: Load ACR with a fractional value from a register
OP6: ACR = SATURATE(ROUND(ACR))
OP7: RF = ACR[7:0]
OP8: RF = ACR[15:8]
OP9: RF = SIGNEXTEND(ACR[19:16])

Constraints:

• A and B are 8 bits, registers are 8 bits

• ACR is 20 bits (including 4 guard bits).

• Only one multiplier may be used. You should select as small a multiplier
as necessary. You also need to annotate whether it is signed or unsigned.

• Rounding is performed in such a way that OP8 can be used to read out the saturated
and rounded result.

Tasks:

a) Draw a hardware schematic for your MAC unit. You must annotate the bit width
of all signals except mux control signals.

19



CHAPTER 3. EXECRCISES FOR MULTIPLY-AND-ACCUMULATE (MAC) UNIT

b) Draw a control table for your MAC unit where you include all operations defined
above.

Exercise 3.2 (intermediate)

You have been tasked with accelerating a piece of code which contains a lot of complex
valued multiplications, additions, and subtractions. A complex value is stored in a normal
register by putting the imaginary part into the MSB part of the register and the real part
in the LSB part of the register.

Your task is to make sure that the following piece of code can execute in at most 7 clock
cycles. All operations in this code are done on complex valued data!
o0 = e0 * f0 - e1
o1 = e0 + e1
o2 = e2 * f1 - e3
o3 = e2 + e3

Constraints:

• You need to be able to execute the excerpt listed above in at most 7 clock cycles.

• You can assume that all operands will be present in the register file. You can also
assume that all results should be written back to the register file.

• You do not have to worry about overflows. (The person who designed the code has
guaranteed that there will never be any overflows.1)

• You are only allowed to use 2 hardware multipliers

Inputs:

OpA[31:16] Imaginary part of first operand from register file in fractional format
OpA[15:0] Real part of first operand from register file in fractional format
OpB[31:16] Imaginary part of second operand from register file in fractional format
OpB[15:0] Real part of second operand from register file in fractional format
Control signals (decided by you in the control table)

Outputs:

TO RF[31:16] Imaginary part of the result
TO RF[15:0] Real part of the result

1Famous last words. . . (read about flight 501 of Ariane 5 if you are interested in an expensive real
example of this).
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Tasks:

a) Select a suitable instruction set for your module.

b) Draw a schematic of your accelerator.

c) Draw a control table for your accelerator.

Exercise 3.3 (intermediate)

Design a MAC unit capable of supporting the following two functions:
// Input data in r0 -r5 are in 16- bit fractional format
// Output data in r6 and r7 should be in 16- bit fractional format
//
// Intermediate calculations are performed using a sufficient
// number of bits , so that SAT () will be able to detect an
// overflow .
function butterfly_part ()

r6 = SAT(ROUND(r0 * r2 - r1 * r3 - r4))
r7 = SAT(ROUND(r0 * r3 + r1 * r2 - r5))

endfunction

// * DM0 and DM1 are 16 bits wide and contains signed integers in
// this example .
// * sumofproducts and sumofdiff are signed integers that are
// "wide enough " (no overflow should occur during the repeat
// loop)

function filter ( buffer )
AR0 = r0 // Use the instruction set AR0 ,r0
AR1 = r1 // Use the instruction set AR1 ,r1

sumofproducts = 0
sumofdiff = 0

repeat (30)
sumofproducts += DM0[AR0] * DM1[AR1]
sumofdiff += abs(DM0[AR0 ++] - DM1[AR1 ++])

endrepeat

if( sumofproducts > 0 x7fffffff ) then
sumofproducts = 0 x7fffffff

else if( sumofproducts < -0 x80000000 ) then
sumofproducts = -0 x80000000

endif

// Read out the 32- bit result to general purpose registers
r2 = sumofproducts [31:16]
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r3 = sumofproducts [15:0]
r4 = sumofdiff [31:16]
r5 = sumofdiff [15:0]

endfunction

Inputs to this module:

DM0 result[15:0] Data from memories
DM1 result[15:0]
OpA[15:0] Operands from the register file
OpB[15:0]
Control signals (created by you in your control table)
(clk) (And, of course, a clock signal)

Outputs from this module:

TO RF[15:0] This is sent to the register file writeback port

Constraints:

• The register file, DM0, and DM1 are 16 bits wide.

• It is up to you to decide how many accumulators you will need and how large they
should be.

• The other parts of the processor have enough features to support these assembly
programs (that is, the PC has a repeat instruction, the AGU have all relevant
addressing modes, etc)

• The function butterfly part() should be executed in at most 15 clock cycles
(excluding the return instruction)

• The function filter() should be executed in at most 80 clock cycles (excluding the
return instruction)

Tasks:

a) Select an instruction set for your MAC unit and write assembly programs for both
functions. You should also decide how many accumulator registers you will need
and how wide such a register should be.

b) Draw a schematic of your MAC unit (including a control table).
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Exercise 3.4 (easy)

Same as exercise 3.3 except that you may use 4 hardware multipliers.

Exercise 3.5 (challenging)

Same as exercise 3.3 except that you are only allowed to use one hardware multiplier.

�
Use Gauss’ complex multiplication algorithm.

Exercise 3.6 (intermediate)

Consider the following two functions:
// Pointers to the start of the indata , outdata , and state arrays
// are passed in r0 -r2
function biquad (indata , outdata , state)

m0 = state [0] // m0 ... m3 are signed 16- bit integers
m1 = state [1]
m2 = state [2]
m3 = state [3]
i=0
// tmp should be wide enough to handle the calculations
// without any possibility of overflow
repeat 100

tmp = coeff0 * indata [i] // coeff0 ... coeff4 are all
tmp = tmp + coeff1 * m0 // signed 16- bit integer
tmp = tmp + coeff2 * m1 // constants
tmp = tmp + coeff3 * m2
tmp = tmp + coeff4 * m3

tmp = tmp + 8192
tmp = tmp >> 14 // Arithmetic right shift

if tmp > 32767 then
tmp = 32767

else if tmp < -32768 then
tmp = -32768

endif

m3 = m2
m2 = tmp
m1 = m0
m0 = indata [i]
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outdata [i] = tmp

i=i+1
endrepeat

state [0] = m0
state [1] = m1
state [2] = m2
state [3] = m3

endfunction

// Note: vector1 and vector2 are both in fractional format .
// You can select which memory to place each vector in.
function dotproduct (vector1 , vector2 )

ACR = 0
i = 0
repeat 10

ACR = ACR + vector1 [i] * vector2 [i]
i = i + 1

endrepeat

return SAT(ROUND(ACR )) // The value should be returned in r0
endfunction

Constraints:

• The biquad() function should execute in less than 750 clock cycles (excluding the
return instruction)

• The dotproduct() function should execute in less than 16 clock cycles (excluding
the return instruction)

• There are two single port data memories which are both 16 bits wide. However, you
can decide which memories to use for indata, outdata, and state arrays.

• The general purpose register file has two read ports and one write port. The registers
are 16 bits wide.

• An instruction word includes space for a 16-bit immediate

• There should be at least one 40-bit accumulator register in your MAC unit.

• You can select what inputs and outputs your MAC unit should have, based on the
constraints above.

• You are only allowed to use one 17× 17-bit signed multiplier.
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Tasks:

a) Select an instruction set which is suitable for your MAC unit and translate the
functions above into assembler.

b) Draw a schematic and a control table for your MAC unit.

Exercise 3.7 (challenging)

Same as exercise 3.6 except that you should run the biquad function in less than 450
clock cycles.
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4 Exercises for Program Flow Con-
trol (PFC) Unit

Exercise 4.1 (intermediate)

A schematic of a processor is shown in Fig. 4.1. The datapath is 16 bits wide and there
are 16 registers, r0 to r15. OpB will always be set to the contents of a register whereas
OpA can be set to either a register or the 16 least significant bits of the instruction word
depending on whether bit 16 of the instruction word is 0 or 1, as shown in the figure. The
program memory contains 4096 (212) instructions. The following instructions are already
implemented:

Instruction Explanation Instruction Explanation
nop No operation set OpW, immediate OpW = immediate
add OpW,OpA,OpB OpW = OpA + OpB load OpW, OpA OpW = DM[OpA]
sub OpW,OpA,OpB OpW = OpA - OpB store OpA, OpB DM[OpA] = OpB

There are also 16 program flow control instructions implemented in the decoder, tenta-
tively named PFCOP0 . . . PFCOP15. When a jump instruction is encountered, the decoder
will set the signal PFC OP[4] to 1. Additionally, PFC OP[3:0] is set to 0 if PFCOP0 was
decoded, 1 if PFCOP1 was decoded, and so on. If a jump instruction is not decoded, the
value of PFC OP[3:0] is undefined. Each PFCOP instruction may (but do not have to) use
OpA and OpB. The 12 least significant bits (PFC DATA) in the instruction word can be used
as an absolute address, pc relative address, loop counter setting, etc.

Tasks:

a) What is the minimal amount of delay slots an unconditional jump instruction will
have if the FORCE NOP signal is deactivated?

b) Write assembly code to calculate the sum of r0, r1, and r2, using a minimum
amount of instructions.

�
The pipeline has no forwarding or register bypass! (And the register file is
implemented using write after read.)

27



CHAPTER 4. EXERCISES FOR PROGRAM FLOW CONTROL (PFC) UNIT
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c) The following two programs need to execute in less than 200 cycles each. The size
of program 1 must be less than 20 instructions. The size of program 2 must be
less than 25 instructions. Decide on which program flow control instructions you
will need to fulfill these constraints. You may create up to 16 program flow control
instructions. (There are 4 bits in PFC OP[3:0].) You also need to describe how
many delay slots each instruction has. Finally, you should write assembly code for
both programs.
// Program 1: // Program 2:
// x is in r0 // inptr is in r0 ,
// flag is in r1 // outptr in r1
if x >= 10 repeat 36

x = x + 55 x = DM[inptr]
else inptr = inptr + 1

x = x + 48 DM[ outptr ] = x
if flag == 1 outptr = outrptr + 1

x = x + 32 endrepeat
end if

end if

d) Draw a hardware schematic of the program counter module. You may use multi-
plexers, registers, adders, FSMs (finite state machines), and logic gates. If you use
an FSM, you must include the state diagram of the FSM.

Signal Explanation
FORCE NOP This signal makes the instruction decoder believe

that it is decoding a NOP instruction.
NEXT PC The next value for the program counter.
PC The current value of the program counter.
PCFSM OPA LARGER Set to 1 if OpA is larger (unsigned) than OpB
PCFSM OPA SMALLER Set to 1 if OpA is smaller (unsigned )than OpB
PCFSM OPA EQUAL Set to 1 if OpA is equal to OpB
PFC DATA, PFC DATA 1, The twelve least significant bits in the instruction
PFC DATA 2 word. These signals are delayed 0, 1 or 2 clock cycles.
PFC OP[4] 1 if a jump is decoded, 0 otherwise
PFC OP[3:0] The kind of jump that was decoded.
RESET System reset. Will be asserted for at least 16 cycles.

Exercise 4.2 (challenging)

Same as exercise 4.1 with the following modifications:

• Program 1 and 2 must execute in less than 165 clock cycles each.

• The size of program 1 must be less than 12 instructions

• The size of program 2 must be less than 20 instructions
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Exercise 4.3 (easy)

Design a PC module capable of the following operations:

OP1: PC++
OP2: PC = PC + signextend(Immediate)
OP3: PC = PC
OP4: PC = RF
OP5: Push(PC); PC = PC + signextend(Immediate)
OP6: Push(PC); PC = RF
OP7: PC = Pop()
OP8: if(flag) PC = PC + signextend(Immediate) else PC++
OP9: if(!flag) PC = PC + signextend(Immediate) else PC++

Inputs to your PC module:

• Immediate[9:0]: Jump target offset from the instruction word

• RF[15:0]: Input from register file

• Flag: 1-bit signal from ALU

• All control signals that you specify in the control table

• Reset signal (which will be asserted for at least 10 clock cycles)

• (And, of course, a clock signal)

Outputs from your PC module:

• PC[15:0]: Program counter value sent to the program memory)

Other constraints:

• After the processor is reset, the processor should start executing at address 0

• You must also have a hardware stack in your PC module capable of holding two
entries.

Also, note that for this exercise you do not have to worry about the rest of the pipeline.
That is, you can assume that the instruction decoder has already dealt with delay slots,
setting the flag in the ALU, etc.
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Tasks:

a) Draw a schematic of your PC module.

b) Draw a control table for your PC module.

Exercise 4.4 (intermediate)

During the design of a simple DSP processor, the following functions have been determined
to be the most important:
function main ()

while (TRUE)
// get_packet () returns the return value in register r0
pkt_type = get_packet ()
if ( pkt_type <= 0) then

logerror ()
else if( pkt_type <= 9) then

worker ()
else if( pkt_type >= 59) then

guiworker ()
else

logerror ()
end if
update_outputs ()

endwhile
endfunction

function worker ()
optype = get_packet_operation () // Returns packet pointer in

// r0
if ( optype == 0) then

DM0 [95] = sum ()
else if ( optype == 1) then

DM0 [96] = diff ()
else

logerror ()
endif

endfunction

// get_current_length (), get_current_buffer () and
// get_previous_buffer () executes in 10 clock cycles each.
// They all return the return value in register r0.

// Must execute in at most 130 clock cycles
function sum ()

ptr = get_current_buffer () // ptr is returned in r0
tmp = 0
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for (i=0; i < 100; i = i + 1)
tmp = tmp + DM0[ptr + i]

endfor
return SAT(tmp)

endfunction

// Must execute in less than 50 + length *3 clock cycles .
function diff ()

tmp = 0
length = get_current_length ()
ptr1 = get_current_buffer ()
ptr2 = get_previous_buffer ()
for (i=0; i < length ; i = i + 1)

tmp = tmp + ABS(DM0[ptr1 + i] - DM1[ptr2 + i])
endfor
return tmp

endfunction

Your task is to specify how the program flow control (PFC) unit should work.

Information:

• Unconditional branches have one delay slot

• Due to pipeline delays, conditional branches have two delay slots

• Register indirect branches have three delay slots

• The program flow control instructions may use the negative, zero, and saturation
flag from the ALU.

• There is no requirement to minimize the amount of PFC instructions or the size of
the assembler program. (But you probably want to do that anyway to minimize the
chance of any error.)

• The processor is a single scalar processor able to issue one instruction per clock
cycle.

Tasks:

a) Select the PFC instructions that you will require. For each instruction that you
select you must describe exactly what the instruction does using pseudo code.

b) Using these PFC instructions, implement the program shown above in assembler
code. In addition to the PFC instructions that you selected in a), you may use
any instruction commonly found in a single scalar DSP processor such as Senior
without having to describe how it works (such as normal ALU instructions, MAC
instructions, etc). You do not have to implement the functions that are not shown
above (e.g. logerror(), get packet operation(), etc).
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5 Exercises for Address Generation
Unit (AGU)

Exercise 5.1 (easy)

Draw a schematic and a partial control signal table for an address generator unit.

It should contain five registers:

AR0[15:0] Address register 0
AR1[15:0] Address register 1
BOTTOM[15:0] Lower address for modulo addressing
TOP[15:0] Higher address for modulo addressing
STEP[15:0] Configurable step size

Output:

ADDRESS[15:0] This is the address to the data memory

Inputs:

IMMEDIATE[15:0] Constant data carried by the instruction
RF[15:0] Data from the general register file
OPERATION[3:0] Operation performed by the AGU based on the table below
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OPERATION Operation to be performed
0000 Load AR0 from general register file
0001 Load AR1 from general register file
0010 Load STEP from the general register file
0011 NOP
0100 Direct addressing

(the address is based on immediate data in the instruction)
0101 Indirect addressing

(the address is based on a general purpose register)
0110 Post increment of AR0 (step size is based on the STEP register)
0111 Post increment of AR1 (step size is based on the STEP register)
1000 AR0 + immediate
1001 AR1 + immediate
1010 Modulo addressing on AR0 with post increment (step size is 1)
1011 Modulo addressing on AR1 with post increment (step size is 1)
1100 NOP
1101 NOP
1110 Load bottom register from RF
1111 Load top register from RF

Your hardware should support all of these operations, but your control signal table only
needs to show the control signal configuration for operation 0000, 0100, 0110, 1000, and
1011.

Exercise 5.2 (intermediate)

In this exercise you should create an address generator unit. It should support the ad-
dressing modes necessary to execute the following three functions under the specified clock
cycle constraints.
// This function must execute in less than 20 clock cycles .
// Inputs : ptr is passed in register r0
function dot13(ptr)

ptr0 = DM0[ptr +31]
ptr1 = DM0[ptr +33]
resultptr = DM0[ptr +35]
tmp = 0
for (i = 0; i < 13; i = i + 1)

tmp += DM0[ptr0 ++] * DM1[ptr1 ++];
endfor
DM0[ resultptr ] = SAT(ROUND(tmp ))

endfunction

// This function must execute in less than 140 clock cycles
// ptr0 is passed in register r0 , ptr1 in r1 , buffersize in r2 ,
// last in r3 , step in r4
// Note: You can assume the following : buffersize /8 > stepsize
function filter (ptr0 , ptr1 , buffersize , last , step)
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tmp = 0
for(i=0; i < 128; i = i + 1)

tmp += DM0[ptr0 += step] * DM1[ptr1 ++]
if (ptr0 > last) then

ptr0 = ptr0 - buffersize
endif

endfor
endfunction

// This function must execute in less than 700 clock cycles
// Inputs : ptr is passed in register r0
function interleaver (ptr)

ptr0 = DM0[ptr +31]
ptr1 = DM0[ptr +33]
for(i=0; i < 256; i = i + 1)

// You may decide whether to use DM0 and/or DM1 for the
// following memory acceses :
idx = DMx[ptr0 ++]
tmp = DMx[idx]
DMx[ptr1 ++] = tmp

endfor
endfunction

Additional information:

• A memory address is 16 bits wide, and the memories are word-addressable

• Both DM0 and DM1 are 16-bit single port memories

• There are 32 general purpose registers that are 16 bits wide

• An instruction has two operands, OpA and OpB. OpA will always come from a
register and OpB may come either from a register or as a 16-bit immediate from
the instruction word

• You are allowed to use up to four adders (or comparators) in your unit

• You may assume that the datapath has full forwarding (unless you do something in
your part of the design which would prohibit forwarding in some situations)

• One instruction can be issued (in-order) each clock cycle

• You may assume that all other paths are implemented in such a way that the
functions above can be implemented, e.g., there is a repeat instruction, and the
MAC instruction can load both operands directly from memories

• The functions must contain fewer than 100 instructions
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Tasks:

a) Select the addressing modes you will need to implement these three functions under
the specified clock cycle constraints.

b) Draw a schematic of your AGU. In this schematic you must also include how the
memories are connected to the AGU. It is not very realistic, but you may use
asynchronous memories if you want to. You should also include a control table for
your AGU.

c) Write assembly code for the filter() and interleaver() function using the ad-
dressing modes supported by your AGU. (You do not need to write assembler code
for the dot13() function, but your hardware should be capable of supporting that
function anyway under the given clock cycle constraints.)

�
Be careful to avoid hazards by rearranging code or inserting NOP instructions
as appropriate!

Exercise 5.3 (intermediate)

Profiling has shown that the following two functions are important for a certain appli-
cation. Your task is to design an AGU that is capable of supporting them under the
constraints given below.

function FIR_FILTER (samplesptr , bottom , top , coeffptr )
repeat (128)

ACC = ACC + dm0[ samplesptr ] * dm1[ coeffptr ]

samplesptr = samplesptr + 1
if samplesptr == top
then

samplesptr = bottom
endif
coeffptr = coeffptr + 1

endrepeat
endfunction

function STORE_VAL (addr , value)
parameter = dm0 [59]
dm0[addr] = value
dm0[addr +2] = parameter
dm0[addr +4] = parameter
dm0[addr +8] = parameter
dm0[addr +16] = parameter
dm0[addr +32] = parameter

endfunction

36



CHAPTER 5. EXERCISES FOR ADDRESS GENERATION UNIT (AGU)

Constraints:

• STORE VAL() must execute in less than 12 clock cycles. FIR FILTER() must execute
in less than 140 clock cycles.

• The processor is a single scalar pipelined DSP processor which issues one instruction
each clock cycle. (Like Senior.) You do not need to worry about pipeline penalties
for any kind of jump in this exercise however.

• Function parameters are passed in general purpose registers

• You can assume that all other parts of the processor can handle the clock cycle
requirements listed above. E.g., the MAC unit is connected to each memory, etc.
This exercise is only about designing the AGU.

• The general purpose register file has two read ports and one write port. The mem-
ories are single ported.

• You should minimize the amount of hardware in your AGU by for example making
use of the fact that dm0 and dm1 will not require the same addressing modes.

Exercise 5.4 (challenging)

Same as exercise 5.2, except that you also have the following constraints:

• You may only use synchronous memories

• You may only use one pipeline stage for the memory access (e.g., you cannot connect
the output of one memory to the input of the next memory and then write the result
back to the register file in one instruction)
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6 Exercises for Accelerated Custom
Instructions

Exercise 6.1 (intermediate)

The following function should be implemented on the Senior processor.

// matrixptr is in r0 , vectorptr in r1 and resultptr in r2
function rotate_vector (matrixptr , vectorptr , resultptr )

A = dm0[ matrixptr ]
B = dm0[ matrixptr +1]
C = dm0[ matrixptr +2]
D = dm0[ matrixptr +3]
repeat 50

X = dm0[ vectorptr ++]
Y = dm0[ vectorptr ++]
ROTATEDX = A*X+B*Y
ROTATEDY = C*X+D*Y
dm1[ resultptr ++] = ROTATEDX
dm1[ resultptr ++] = ROTATEDY

endrepeat
endfunction

Constraints:

• matrixptr, vectorptr, and resultptr are available in general purpose registers
when the function is called.

• A, B, C, D, X, Y, ROTATEDX, and ROTATEDY are 16-bit fractional numbers.

• You do not need to worry about saturation and rounding in this exercise.

• You may not add any ports or change the width of either DM0 or DM1.
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Tasks:

Your task is to create a special unit present in the pipeline of the Senior processor so
that the function ROTATE VECTOR can be executed in less than 130 clock cycles. You will
also need to select suitable instructions to implement this function. You can assume that
the processor has the required program flow control and addressing modes required to
support this function.

a) Select a set of new instructions that will allow you to execute ROTATE VECTOR in less
than 130 clock cycles and translate ROTATE VECTOR into assembler. For each of your
new instructions you also need to describe any AGU or memory operation that it
may perform.

b) Draw a hardware schematic of your vector rotation unit. You should minimize the
amount of multipliers. You may also use as many gates, multiplexers and adders as
you want to (within reason).

c) Draw a control table for your hardware where you include all instructions that you
selected in task a).

Note: In a real scenario you would probably reuse some hardware in the MAC unit for the
vector rotation instruction(s). For simplicity reasons we ignore this fact in this exercise.

Exercise 6.2 (intermediate)

The function fir 3() is responsible for 70% of the time in a hypothetical application
running on the Senior processor. Your task is to evaluate the hardware cost of speeding
up this function by designing a custom instruction that is able to execute fir 3() in
one clock cycle. Additionally, it is necessary to initialize the values used by the fir 3()
function by using the initfir 3() function. However, it is expected that the fir 3()
function will be executed around 1000 times as often as the initfir 3() function. This
means that the initfir 3() function does not need to execute quickly.
function fir_3 ()

samples [2] = samples [1]
samples [1] = samples [0]
samples [0] = dm0[ inputptr ]
inputptr = inputptr + 1

tmp = 0
tmp = tmp + samples [0] * coefficients [0]
tmp = tmp + samples [1] * coefficients [1]
tmp = tmp + samples [2] * coefficients [2]

dm1[ outputptr ] = SATURATE (tmp)
outputptr = outputptr + 1

endfunction
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function initfir_3 (val1 , val2 , val3 , val4 , val5)
samples [0] = 0
samples [1] = 0
samples [2] = 0
inputptr = val1
outputptr = val2
coefficients [0] = val3
coefficients [1] = val4
coefficients [2] = val5

endfunction

Constraints:

• Function parameters are passed in general purpose registers

• samples contains 16-bit values in signed integer format

• coefficients contains 16-bit values in signed integer format

• The tmp variable has a suitable number of guard bits.

• You do not need to pipeline this unit for maximum clock frequency.

• You should be able to issue one fir 3() instruction every clock cycle.

Tasks:

Your task is to design and implement the function fir 3() as a special instruction on the
Senior processor. You also need to implement support for the initfir 3() function and
you will probably need to add a couple of instructions to do this.

a) Draw a hardware schematic of the modified parts of the pipeline. You do not need
to annotate bit widths. You do not need to annotate the contents of a SATURATE
box.

b) Draw a control table for your hardware where you include a NOP instruction, the
fir 3() instruction and the instructions necessary to implement initfir 3(). You
should also write pseudo assembler code for initfir 3().
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Exercise 6.3 (intermediate)

Based on previous experience, a function called Read1bit() can be fairly expensive for an
MP3 decoder. Your task is to evaluate the cost of implementing this function in software
and hardware.

�
The function below is written to simplify assembler implementation, a good hardware
implementation may look slightly different.

// Read 1 bit from a bitstream in memory and increment the bitpointer
function Read1bit ()

Memval = memory [ CurrentAddress ] // The memory is 16 bits wide

// Calculate 2 to the power of CurrentBit
Bitmask = 1 << CurrentBit

// Check if bit number CurrentBit is set in Memval
if Memval & Bitmask

Bit = 1
else

Bit = 0
endif

// Advance bit position (and memory pointer if necessary )
CurrentBit = CurrentBit + 1
if CurrentBit > 15

CurrentBit = 0
CurrentAddress = CurrentAddress + 1

endif

return Bit // Return value is located in R0
endfunction

Tasks:

a) Write pseudo assembler code for Read1bit on a typical DSP or RISC processor (like
Senior).

b) Estimate how many clock cycles the Read1bit function will execute in for the best
and worst case. (You will need to make and document reasonable assumptions
about your processor.)

c) Your task is to implement Read1bit as a single instruction. Your task is to figure
out what units in the DSP processor you would have to modify to do this and show
what kind of hardware you would add to these units.
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7 Design Challenge: Design a DSP
Processor

This is intended as a challenge which will allow you to check whether you have not only
understood the individual parts but also verify that you can use all of these parts together.
The difficulty level of this challenge is quite high, but since you can approach this exercise
in a few different ways, I believe that it will be of use for all TSEA26 students.

7.1 Approach 1: Solving the entire exercise as it is written

The difficulty level of this approach is well above that of the exam. So if you can manage
this, you should be able to get a very good result on the exam.

7.2 Approach 2: Complete assembler-implementation, incomplete hardware

Since it is quite time-consuming to draw hardware-schematics, you can select an instruc-
tion set suitable for all functions, but in order to save time you might only have time
to complete a few of the modules. (In that case you might want to concentrate on the
modules that you are least familiar with.) The difficulty level of this approach is still
above that of the exam though.

7.3 Approach 3: Incomplete assembler-implementation, incomplete hard-
ware

If it is too difficult for you to consider all functions and all hardware-modules at the
same time, you might want to limit yourself to a few functions and a few modules. The
following is a list of combinations that I recommend in that case:

• ALU: function 1, function 4, function 6

• AGU: function 1, function 3, function 6

• MAC: function 2, function 3, function 7
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• PC: function 3, function 5, function 8

The difficulty level of this approach is more or less similar to that of the harder questions
given on the exam.

7.4 Approach 4: Same as approach 3 but with a simplified pipeline

In this approach you can simplify your assembly programs by assuming that the pipeline
has full forwarding. And you might also want to make other assumptions (for example,
you might want to remove the pipeline stage between the ALU/AGU and the memories
and the MAC unit.

Depending on how many assumptions you make here, this exercise will be more or less
easier than questions given on the exam. Even at this level it should be possible to pass
the exam though.

7.5 The task

There are three tasks in this exercise. The first is to select a suitable instruction set. The
second is to write assembly code for function 1-8 included in this document. Finally, you
should draw the hardware schematic and control tables for the ALU, AGU, PC, and MAC
unit of this processor. You should of course try to minimize the amount of hardware you
use (especially multipliers and adders). For all of these tasks you need to consider the
processor-pipeline given in Figure 1 on the next page.

This is meant to be a challenging task, but you are of course free to do only parts of it.
For example, if you feel that your knowledge of MAC and ALU units are quite good, you
can concentrate on the PC and AGU part of this exercise. Alternatively, you might want
to simplify the exercise by only looking at (for example) program 1–4 instead of program
1–8.

Since this exercise is totally voluntary and will have no direct effect on your grade, you
can (if you want to) do the exercise in a group of students. I also encourage you to team
up with another student (or group of students) so that you can help correct each others’
solution proposals.
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7.6 Instruction format

• insn[20:17]: Selects OpB register

• insn[15:12]: Selects OpA register

• insn[15:0]: OpA immediate value

• insn[16]: Selects whether a register or immediate is used for OpA

• insn[11:0]: Immediate data sent to the PC module. Can be used in whatever way
you want to.

• insn[24:21]: Selects the writeback register

• insn[31:25]: Instruction code (you can specify up to 27 instructions)

7.7 Constraints

• You may not change the pipeline, add ports to the register file or memorise, etc

• You need to be able to support at least two levels of nested subroutine calls

• Each program listed below also contains additional constraints for you

7.8 Hints

To limit the complexity of this exercise, the pipeline has no forwarding. You need to take
this into account when you write your assembly programs. You should also remember
that your branch instructions will (probably) have delay slots.

While it should be clear from the figure, do note that the register-file is implemented as
a read-before write memory.

The hardware is also designed in such a way that you have a fairly large freedom in how
you handle conditional branches. You can use whichever one of these two approaches that
you prefer:

• cmp r0,r5
bge label

• bge r0,r5,label
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7.9 Our computation kernels

By using benchmarks the application engineers have determined that the following 8
functions are especially important for our application domain. They have also determined
the clock cycle requirement on each of these functions.

Finally, to make it more interesting, the evil director of marketing have set arbitrary limits
for the number of instructions that each function may occupy in the program memory.
(Hint: Luckily there is still some space left in at least some of these functions for various
program optimization techniques such as loop unrolling.)

7.9.1 Function 1: sanitize buffer values()

// inbuffer and outbuffer are both located in DM1
// buffersize is guaranteed to be less than 200
void sanitize_buffer_values ( uint16_t buffersize )
{

uint16_t i;
for(i=0; i < buffersize *3; i++){

int16_t x = inbuffer [i];
if(x < -230){

outbuffer [i] = -230 << 2;
}else if (x > 5243){

outbuffer [i] = 5243 << 2;
}else{

outbuffer [i] = x << 2;
}

}
}

Clock cycle constraints: Should execute in no more than 18 × buffersize + 10 clock
cycles (including return from subroutine)
Program memory constraints: Must use less than 40 instruction words
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7.9.2 Function 2: butterfly()

// i,j, and c are in general purpose registers
// indata , coeff , and result are located somewhere in DM0 and/or DM1
// (your choice )
void butterfly ( uint16_t i, uint16_t j, uint16_t c)
{

// Setup indata
// Setup outdata
int16_t tmp1 = indata [i];
int16_t tmp2 = indata [i+1];
int16_t tmp3 = indata [i+j];
int16_t tmp4 = indata [i+j+1];

int16_t w1 = coeff[c];
int16_t w2 = coeff[c+1];

// All multiplications and additions
// in this function should use saturation !
// ( except address calculations )
int16_t tmp5 = tmp3 * w1 - tmp4 * w2;
int16_t tmp6 = tmp3 * w2 + tmp4 * w1;

int16_t tmp7 = tmp1 + tmp5;
int16_t tmp8 = tmp2 + tmp6;

int16_t tmp9 = tmp1 - tmp5;
int16_t tmp10 = tmp2 - tmp6;

result [i] = tmp7;
result [i+1] = tmp8;
result [i+j] = tmp9;
result [i+j+1] = tmp10;

}

Clock cycle constraints: Should execute in no more than 20 clock cycles (including
return from subroutine)
Program memory constraints: No constraints have been given
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7.9.3 Function 3: fir()

// Function parameters are stored in general purpose registers
int16_t fir( int16_t newsample , uint16_t coeff_ptr , uint16_t fir_ptr ,

uint16_t start_ptr , uint16_t end_ptr )
{

DM0[ fir_ptr ] = newsample ;
fir_ptr = fir_ptr + 1;
if( fir_ptr == end_ptr ){

fir_ptr = start_ptr ;
}

ACR = 0
for(i=0; i < 32; i = i + 1){

// This is a fractional multiplication
ACR = ACR + DM0[ fir_ptr ] * DM1[ coeff_ptr ];
fir_ptr = fir_ptr + 1;
if( fir_ptr == end_ptr ){

fir_ptr = start_ptr ;
}
coeff_ptr = coeff_ptr + 1;

}

// Result should be in fractional format
return SAT(ROUND(ACR )); // Returns the result in register r0

}

Clock cycle constraints: Should execute in no more than 45 clock cycles (including
return from subroutine)
Program memory constraints: Must use no more than 15 instructions
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7.9.4 Function 4: getbits()

// Function parameters should be in general purpose registers
// The return value should be in a general purpose register
uint16_t getbits ( uint16_t val , uint16_t numbits , uint16_t offset )
{

uint16_t tmp = (1 << numbits ) - 1;
val = val >> offset ;
return val & tmp;

}

Clock cycle constraints: Should execute in no more than 16 clock cycles (including
return from subroutine)
Program memory constraints: No constraints given

7.9.5 Function 5: preprocess()

// Function parameters are stored in general purpose registers
uint16_t preprocess ( int16_t a, int16_t b)
{

if(a > b){
if(a > 56){

return a -56;
}else{

return b - 56;
}

}else{
if(b < 12){

return b+12;
}else{

return a+12;
}

}
}

Clock cycle constraints: No constraints given
Program memory constraints: No constraintes given
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7.9.6 Function 6: prepare data()

// It is up to you to select where indata is stored in DM0 and/or DM1.
void prepare_data (void)
{

uint16_t i;
for(i=0; i < 128; i++){

int16_t tmp1 ,tmp2;
tmp1 = indata [i *2+0];
tmp2 = indata [i *2+1];
int16_t average = (( int32_t )tmp1 + ( int32_t ) tmp2) >> 1;
tmp = bitrev (i << 9);
outdata [tmp] = average ;

}
}

// Bitrev is an operator that will reverse the order of all 16 input bits.
// In c-code it would look something like the following :
//
// uint16_t bitrev ( uint16_t indata )
// {
// int i;
// int result = 0;
// for(i=0; i < 16; i++){
// if( indata & (1 << i)){
// result = result | (1 << (15-i));
// }
// }
// }
//
// You are strongly encouraged to do something clever in regards to
// this ...

Clock cycle constraints: Should execute in no more than 1900 clock cycles (including
return from subroutine)
Program memory constraints: Must use less than 40 instruction words
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7.9.7 Function 7: dot16()

// fixed_0_15 is a 16- bit fractional value (s. xxxxxxxxxxxxxxx )
// fixed_3_12 is a 16- bit fixed point value with 1 sign bit ,
// 3 bits before the binary point , and 12 bits after the
// binary point. (sxxx. xxxxxxxxxxxx )
//
// You ’ll have to decide the datatype for ACR yourself
//
// The result should be returned in register r0
// ptr1 and ptr2 are stored in general purpose registers .
fixed_3_12 dot16( uint16_t ptr1 , uint16_t ptr2)
{

fixed_0_15 tmp1 , tmp2;
fixed_3_12 result ;

uint16_t i;

ACR = 0;
for(i=0; i < 16; i++){

tmp1 = DM0[ptr1 ++];
tmp2 = DM1[ptr2 ++];
ACR = ACR + tmp1 * tmp2;

}

result = SAT(ROUND(ACR ));
return result ;

}

Clock cycle constraints: Should execute in no more than 30 clock cycles (including
return from subroutine)
Program memory constraints: Must use less than 14 instruction words
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7.9.8 Function 8: find val()

// Function parameters are stored in general purpose registers
// Return value should be in register r0
uint16_t find_val ( int16_t val)
{

const uint16_t NUMENTRIES = 256;
uint16_t index = NUMENTRIES / 2;
uint16_t step = NUMENTRIES / 4;

while (step > 0){
if(val == data[index ]){

return index;
}else if(val < data[index ]){

index = index - step;
}else{

index = index + step;
}
step = step / 2;

}
return index;

}

Clock cycle constraints: No constraints given
Program memory constraints: No constraintes given
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8 Solutions Proposals for the Intro-
ductory Exercises

Solution proposal for 1.1

S[N+1,2]

S[N+1,0]

=1
1

N+2 ADD

C

MSB MSB

/2

A[N-1,0] B[N-1,0]

Solution proposal for 1.2

The algorithm convolves a signal of 1000 samples with a filter with 32 coefficients.
.code
;; Initialize the address registers to copy coefficients from ROM0 to RAM1.
;; This is done because data is stored in RAM0 and coefficients are stored in RAM0
;; which does not allow simultaneous reads.
set ar0 , coeff_in_rom
set step0 ,1
set ar1 , coeffs
set step1 ,1
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repeat coeff_copy ,16
ld0 r0 ,( ar0 ++)
ld0 r1 ,( ar0 ++)
st1 (ar1 ++) ,r0
st1 (ar1 ++) ,r1

coeff_copy

; Set up pointers to coefficient and signal
set r3 , signal ; r3 points to the current sample
set ar1 , coeffs ; ar1 points to the copied coefficients
set ar0 , signal ; ar0 points to signals
; Set up a register to loop 1000 times
set r1 ,1000 ; loop counter
; Configure the wraparound for coefficients by setting bot and top
set bot1 , coeffs
set top1 , coeffs_end

loop
; Move on to next sample
inc r3
move ar0 ,r3
; Do the convolution using a repeat instruction
repeat convolution ,32
convss acr0 ,(--ar0 ),( ar1 ++%)

convolution
; Jump back to loop if we haven ’t done 1000 samples
dec r1
jump.ne ds3 loop
; Output the result
move r31 ,rnd div2 acr0 ; Read output from accumulator with rounding and scaling applied
clr acr0 ; clear accumulator
out 0x11 ,r31 ; output sample to file

; End of program
out 0x13 ,r0

; Data definition

.ram0

.skip 31 ; Leading zeros
signal

.skip 1000 ; The signal will be stored here

.skip 31 ; Trailing zeros

;; We load the coefficients from a file which can
;; be generated in for example Matlab

.rom0

. scale 0.125
coeff_in_rom
; # include " coeffs .inc"
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;; Space in DM1 for the coefficients
.ram1

coeffs
.skip 31 ; allocates 31 memory words for coeffs

coeffs_end ; should point to last position
.skip 1 ; last memory word

More efficient version which stores samples in a ring buffer.
.code

coeff_copy
; Set up a loop counter for the outer loop
set r1 ,1000 ; Loop counter

; Set up pointers for the ringbuffer and coefficients
set ar0 , coeffs ; Pointer to the coefficients
set ar1 , ringbuffer ; Pointer to the next location in the ringbuffer
set ar2 , signal ; Pointer to the next sample

; Set up auto wrap - around
set bot0 , coeffs
set top0 , coeffs_end
set bot1 , ringbuffer
set top1 , ringbuffer_end

loop
; Load a new sample from signal to a temporary register
ld0 r0 ,( ar2 ++) ; Load the next sample
nop
; Store the sample in the ring buffer
st0 (ar1),r0 ; Store the next sample in the ring buffer
repeat convolution ,31
; Do the bulk of the convolution
convss acr0 ,( ar0 ++%) ,( ar1 ++%) ; Do the bulk of the convolution

convolution
; Do the final step of the convolution , making sure to restore the ring
; buffer to the correct place
move r2 ,ar1 ; Store the second to last position of the ring buffer
convss acr0 ,( ar0 ++%) ,( ar1 ++%) ; Do the final MAC convolution operation
move ar1 ,r2 ; Restore the ring buffer location to the oldest sample

; Jump back in the outer loop if desired
jump.ne ds3 loop

; Output result and end progrma
move r31 ,rnd div2 acr0 ; Read output from accumulator with rounding and scaling applied
clr acr0 ; clear accumulator
out 0x11 ,r31 ; output sample to file

; End of program
out 0x13 ,r0
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; Data definition

.ram0

.skip 31 ; Leading zeros
signal

.skip 1000 ; The signal will be stored here

.skip 31 ; Trailing zeros

;; We load the coefficients from a file which can
;; be generated in for example Matlab

.rom0

. scale 0.125
coeffs
# include " coeffs .inc"
coeffs_end

;; Space in DM1 for the ring buffer
.ram1
ringbuffer

.skip 31 ; allocates 31 memory words
ringbuffer_end ; should point to the last position

.skip 1 ; allocates last memory word

Solution proposal for 1.3

.code
init_fir_kernel

set r1 ,0 ; r0 -r4 are used as the ringbuffer
set r2 ,0 ; in which we store the samples .
set r3 ,0 ; (No need to clear r0 , as it is written
set r4 ,0 ; immediately below .)

; Our coefficients are stored in here
set r5 , COEFF1
set r6 , COEFF2
set r7 , COEFF3
set r8 , COEFF4
set r9 , COEFF5

set r11 ,200 ; Loop counter . ( Divided by 5 since
; we have unrolled the loop 5 times .)

fir_kernel_unrolled
in r0 ,0 x10
clr acr0
macss acr0 ,r0 ,r5
macss acr0 ,r1 ,r6
macss acr0 ,r2 ,r7
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macss acr0 ,r3 ,r8
macss acr0 ,r4 ,r9
move r10 ,sat rnd mul2 acr0 ; Scale output assuming
in r4 ,0 x10 ; inputs and outputs are
clr acr0 ; in fractional format
out 0x11 ,r10

macss acr0 ,r4 ,r5 ; Repeat everything but this
macss acr0 ,r0 ,r6 ; time , r4 contains the latest
macss acr0 ,r1 ,r7 ; sample .
macss acr0 ,r2 ,r8
macss acr0 ,r3 ,r9
move r10 ,sat rnd mul2 acr0
in r3 ,0 x10
clr acr0
out 0x11 ,r10

macss acr0 ,r3 ,r5 ; And so on (r3 contains latest
macss acr0 ,r4 ,r6 ; sample )
macss acr0 ,r0 ,r7
macss acr0 ,r1 ,r8
macss acr0 ,r2 ,r9
move r10 ,sat rnd mul2 acr0
in r2 ,0 x10
clr acr0
out 0x11 ,r10

macss acr0 ,r2 ,r5
macss acr0 ,r3 ,r6
macss acr0 ,r4 ,r7
macss acr0 ,r0 ,r8
macss acr0 ,r1 ,r9
move r10 ,sat rnd mul2 acr0
in r1 ,0 x10
clr acr0
out 0x11 ,r10

macss acr0 ,r1 ,r5
macss acr0 ,r2 ,r6
macss acr0 ,r3 ,r7
macss acr0 ,r4 ,r8
macss acr0 ,r0 ,r9
move r10 ,sat rnd mul2 acr0

add r11 ,-1
jump.ne ds1 fir_kernel_unrolled
out 0x11 ,r10

out 0x13 ,r0 ; And we are done!
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9 ALU Solution Proposals

Solution proposal for 2.1
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The control table The K logic:

Operation C2 C3 C4
A + B + Cin 0 2 2
SAT(A + B) 0 0 1
SAT(A – B) 1 1 1
MAX(A + B) 1 1 0

C4 S[4] Out
0 0 0
0 1 3
1 - 1
2 - 2

always @* begin : SAT
sat_result = S [3:0];
if(S[4] != S[3]) begin

if(S[4]) begin
sat_result [3:0] = 4’b1000;

end else begin
sat_result [3:0] = 4’b0111;

end
end

end

Solution proposal for 2.2
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Operation Ca Cb Cc Cd Ce
OP0 0 0 - 0 1
OP1 1 1 - 0 1
OP2 1 1 - 1 1
OP3 - - 0 - 0
OP3 - - 1 - 0

SAT:
if ((in [8:7] == 2’b00) || (in [8:7] == 2’b11 )) begin

out = in [7:0];
end else begin

out = {in[8], {7 {!in [8]}}};
end

BITREV:
out [7] = in [0];
out [6] = in [1];
...

LEFTSHIFT:
out = in << B [2:0];

Comments:
Note that this solution utilizes the fact that it is cheaper to use one shifter combined
with two bitreverse-operations compared to using two shifters. It also uses the fact that
|A−B| = |B − A|.

Solution proposal for 2.3

Proposed ALU instructions: ABS(A), MAX(A,B), A+B, A-B, and A+B+Carry

update_statistics :
// This function would be very easy if packet_ctr and
// length were unsigned . However , as they are signed this is
// more tricky . If this was more performance critical we can
// add more instructions to handle this , but as we are lazy
// hardware designers we want to avoid cluttering up the
// instruction set if we can avoid it:

set ar0 , packet_ctr
set r4 ,0
add r1 ,r0 ,#0 x8000 ; carry = ( length < 0)
addc r4 ,r4 ,r4 ; 1 in r4 if length < 0
ld r1 ,DM0[ar0]
sub r4 ,#0,r4 ; -1 in r4 if negative
add r1 ,r0
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st DM0[ar0 ++],r1
repeat endloop ,3
ld r1 ,DM0[ar0 ++]
nop ; Data dependency for load!

addc r1 ,r4
st DM0[ar0 ++],r1

endloop :
ret

find_maxabsval :
set ar0 , dct_indata
set r0 ,0 ; r0 contains max value encountered

repeat loop , 16
ld r1 ,DM0[ar0 ++]
ld r3 ,DM0[ar0 ++]
abs r2 ,r1
max r0 ,r2 ,r0
abs r4 ,r3
max r0 ,r4 ,r0

loop:
ret
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Operation C1 C2 C3 C4 C5
ABS(A) 1 2 3 0 0
MAX(A, B) 0 1 1 1 0
A + B 0 0 0 0 1
A – B 0 1 1 0 1
A + B + Carry 0 0 2 0 1

Solution proposal for 2.4

Proposed ALU instructions: MAXABS(A,B). Constraint: After a load instruction we must
wait a clock cycle before we can use the result. Clock cycles = 2 · 31 + 5 = 67.

set ar0 , dct_indata
set r0 ,0 ; biggest
ld r1 ,( ar0 ++) ; prologue
repeat loop ,31
ld r1 ,( ar0 ++)
maxabs r0 ,r1 ,r0 ; loop

loop
maxabs r0 ,r1 ,r0 ; epilogue
ret

67



CHAPTER 9. ALU SOLUTION PROPOSALS

N+1 ADD

MSB

=1

B[N-1,0] B[N-1]

N+1

N

0

|B|

N+1 ADD

MSB

=1

A[N-1,0] A[N-1]

N+1

N

0

|A|

1
N+1 ADD

N+1

1

S[N]0 1

max(|A|,|B|)

S=|A|-|B|

68



10 MAC Unit Solution Proposals

Solution proposal for 3.1
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R:      output[19:0] = {11'd0, input[7], 8'd0};
T:       output[7:0] = input[15:8];
>>8: output[19:0] = { {8{input[19]},input[19:8]};
<<8: output[19:0] = { input[11:0], 8'b0};
 

C0

C1

C2

A
C

R

11

to RFT
20 8

Sat:
    if(in[19:15]=={5{in[15]}})
        out = in;
    else if(in[19] == 1'b1)
        out = 20'hf8000;
    else
        out = 20'h07fff;
 

Note: Signed multiplier

Operation C0 C1 C2
OP0: No operation - 000 -
OP1: ACR = 0 - 010 -
OP2: ACR = A * B - 001 -
OP3: ACR = A * B + ACR 00 100 01
OP4: ACR = 1.25 * ACR 10 100 01
OP5: Load ACR - 011 -
OP6: ACR = SATURATE(ROUND(ACR)) 11 100 00
OP7: RF = ACR[7:0] 01 000 11
OP8: RF = ACR[15:8] 01 000 01
OP9: RF = SIGNEXTEND(ACR[19:16]) 01 000 10
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Solution proposal for 3.2

Implementing a complex multiplier in a straight forward fashion will use four multipliers.
This is very wasteful as we will only use them two times the 7 clock cycles we are allowed
to use.

Luckily, it is quite easy to solve this exercise using only two multipliers by combining the
complex multiply and complex subtract into two instructions where the first instruction
performs two multiplications and the second instruction performs another two instruc-
tions:
// Instruction set
csubmul1 : TMP = REA * REB - IMA * IMB;

OLDREB = REB;
OLDIMB = IMB;

csubmul2 : TO_RF [31:16] = REA * OLDIMB + OLDREB * IMA - IMB;
TO_RF [15:0] = TMP - REB;

cadd : TO_RF [31:16] = IMA + IMB;
TO_RF [15:0] = REA + REB;

// Assembler listing

csubmul1 r0 , r8 // No destination reg
csubmul2 r12 , r0 , r1
cadd r13 , r0 , r1

csubmul1 r2 , r9 // No destination reg
csubmul2 r14 , r2 , r3
cadd r15 , r2 , r3
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REA = OpA[15:0]; IMA = OpA[31:16]
REB = OpB[15:0]; IMB = OpB[31:16]

Ca

TMP

0      1

OLDREB

REB

0      1

OLDIMB

IMB

Cc

Cc

1      0

R
E
B

0      1

R
E
A

Cd

0      1
IM

B
1      0

IM
A

Cd

Cd

TO_RF[15:0] TO_RF[31:16]

+

Control table   Ca Cb Cc Cd
csubmul1         0  1  1  -
csubmul2         1  0  0  1
cadd             -  -  0  0

1      0

Cc

16

161616

1616
TRUNC

TRUNC 3232

16

1616 16 16

16

16

trunc: out[15:0]=in[30:15];
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Solution proposal for 3.3

For the first function we use a small trick, we do not have a separate multiplication
instruction depending on whether we use fractional or integer multiplication. Instead we
scale the result in program 1 by two by adding the ACR to itself after the multiplications
are finished. This is OK as the exercise only specifies that the result in r6/r7 should be in
fractional, our intermediate calculations can be done in whatever way we want to. Note:
For the sat.rnd instruction, ACR[15:0] will become undefined due to the solution used in
the schematic. However, this doesn’t matter in this case as only ACR[31:16] is accessed
after this.

In program 2 we perform another trick. By reordering the instructions slightly we need
only one accumulator register without violating the performance constraints.

// function butterfly_part ()
mul ACR , r0 , r2 // ACR = r0 * r2
mdm ACR , r1 , r3 // ACR -= r1 * r3
add ACR , ACR // ACR = ACR << 1 (Shift up one step to

// compensate for fractional )
sub. shift16 ACR , r4 // ACR = ACR - r4 << 16
sat.rnd ACR , ACR // ACR = SAT(ROUND(ACR ))
move r6 , ACR [31:16] // r6 = ACR [31:16]
mul ACR , r0 , r3
mac ACR , r1 , r2 // ACR += r1 * r3
add ACR , ACR
sub. shift16 ACR , r5
sat.rnd ACR , ACR
move r7 , ACR [31:16]
ret
// function filter ()
clear ACR // ACR = 0
set AR0 , r0
set AR1 , r1
repeat 30 // Only repeats next instruction
mac ACR ,DM0[AR0 ++], DM1[AR1 ++] // ACR += DM0[AR0 ++] * DM1[AR1 ++]
sat ACR ,ACR
move r2 ,ACR [31:16]
move r3 ,ACR [15:0]
clear ACR
set AR0 ,r0
set AR1 ,r1
repeat 30 // Only repeats next instruction
diffacc ACR0 ,DM0[AR0 ++], DM1[AR1 ++] // ACR = ACR +

// ABS(DM0[AR0 ++]- DM1[AR1 ++])
move r4 ,ACR [31:16]
move r5 ,ACR [15:0]
ret
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Solution proposal for 3.4

This exercise is quite straight forward to solve: Just create a complex multiply, complex
add, and complex subtract instruction.

// Assuming the following aliases for OpA/OpB:
REA = OpA [15:0] ; IMA = OpA [31:16]
REB = OpB [15:0] ; IMB = OpB [31:16]

// Instruction set:
cmul: TO_RF [15:0] = REA*REB - IMA*IMB;

TO_RF [31:16] = REA*IMB + REB*IMA;
csub: TO_RF [15:0] = REA -REB;

TO_RF [31:16] = IMA -IMB;
cadd: TO_RF [15:0] = REA+REB;

TO_RF [31:16] = IMA+IMB;

// Assembler listing :
// Assume i0 is in r0 , c0 in r8 , i1 in r1
// i2 is in r2 , c1 in r9 , i3 in rr
// o0 in r12 , o1 in r13 , o2 in r14
// o3 in r15

cmul r12 , r0 , r8
csub r12 , r12 , r1
cadd r13 , r0 , r1

cmul r14 , r2 , r9
csub r14 , r14 , r3
cadd r15 , r2 , r3

The schematic for this solution is left as an exercise for the reader...

Solution proposal for 3.5

Gauss’ complex multiplication algorithm can be explained as follows:
(a+bi)(c+di) = (k1−k3)+(k1 +k2)i, where k1 = c(a+b), k2 = a(d−c), and k3 = b(c+d).
We should now design an instruction set which can perform the following operations in 7
clock cycles (where all variables contain complex valued data):

o0 = e0 * f0 - e1
o1 = e0 + e1
o2 = e2 * f1 - e3
o3 = e2 + e3

We create the following instruction set. k1, k2, k3, OLDRE, and OLDIM are registers
inside our MAC unit. REA is the real part of operand A, REB is the real part of operand
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B, IMA is the imaginary part of operand A, and IMB is the imaginary part of operand
B. OpD signifies the destination register.

acc0 OpA ,OpB ; k1 = REB * (REA + IMA)
; OLDRE = REB , OLDIM = IMB

acc1 OpD ,OpA ,OpB; k2 = REA * (OLDIM - OLDRE)
; TO_RF [31:16] = IMA + IMB
; TO_RF [15:0] = REA + REB

acc2 OpA ,OpB ; k3 = IMA * (OLDRE + OLDIM)
; OLDRE = REB , OLDIM = IMB

acc3 OpD ,OpA ,OpB; TO_RF [31:16] = k1 + k2 - OLDIM
; TO_RF [15:0] = k1 - k3 - OLDRE
; k1 = REB *( REA+IMA)
; OLDRE = REB , OLDIM = IMB

acc4 OpD ; TO_RF [31:16] = k1 + k2 - OLDIM
; TO_RF [15:0] = k1 - k3 - OLDRE

With these instructions we can write the following program:

; Assumption : e0 is in r0 , f0 is in r1 ,
; e1 is in r2
; e2 is in r3 , f1 is in r4 ,
; e3 is in r5

acc0 r0 ,r1 ; k1 = REB * (REA + IMA)
; OLDRE = REB , OLDIM = IMB

acc1 r10 ,r0 ,r2 ; k2 = REA * (OLDIM - OLDRE)
; TO_RF [31:16] = IMA + IMB ; o1 in r10
; TO_RF [15:0] = REA + REB

acc2 r0 ,r2 ; k3 = IMA * (OLDRE + OLDIM)
; OLDRE = REB , OLDIM = IMB

acc3 r11 ,r3 ,r4 ; TO_RF [31:16] = k1 + k2 - OLDIM ; o0 in r11
; TO_RF [15:0] = k1 - k3 - OLDRE
; k1 = REB *( REA+IMA)
; OLDRE = REB , OLDIM = IMB

acc1 r12 ,r3 ,r5 ; k2 = REA * (OLDIM - OLDRE)
; TO_RF [31:16] = IMA + IMB ; o3 in r12
; TO_RF [15:0] = REA + REB

acc2 r3 ,r5 ; k3 = IMA * (OLDRE + OLDIM)
; OLDRE = REB , OLDIM = IMB

acc4 r13 ; TO_RF [31:16] = k1 + k2 - OLDIM ; o2 in r13
; TO_RF [15:0] = k1 - k3 - OLDRE
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REA = OpA[15:0]; IMA = OpA[31:16]
REB = OpB[15:0]; IMB = OpB[31:16]

trunc: out[15:0]=in[30:15];
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Instruction C1 C2 C3 C4 C5 C6 C7
acc0 0 0 1 1 0 0 -
acc1 1 1 0 0 1 0 0
acc2 1 2 1 0 0 1 -
acc3 0 0 1 1 0 0 1
acc4 - - 0 0 0 0 1

Note: It is actually possible to do away with the acc0 and acc4 instruction by rewriting
the program as follows:

acc3 r11 ,r0 ,r1 ; Write unknown data to r11
acc1 r10 ,r0 ,r2
acc2 r0 ,r2
acc3 r11 ,r3 ,r4 ; Write correct data to r11
acc1 r12 ,r3 ,r5
acc2 r3 ,r5
acc3 r13 ,r3 ,r4 ; Write dummy data to k1 , OLDRE and OLDIM

Solution proposal for 3.6

The easiest way to solve this task when under time constraint is probably to create a
MAC unit which contains four specialized 16-bit registers, m0-m3 and then having the
biquad function look approximately as follows:
biquad :

move ar0 , r0
move ar1 , r1
; move DM0[r2 +0] - DM0[r2 +3] to the m0 -m3 registers

repeat 100, endloop

mul acr , #coeff1 , m0
mac acr , #coeff2 , m1
mac acr , #coeff3 , m2
mac acr , #coeff4 , m3
mac. shiftm0m1 acr , #coeff0 , DM0[ar0 ++]
; The mac.shift instruction moves m0 into m1 and loads a new
; value into m0 from operand b (e.g. DM0 ).
sat.rnd.shift acr

endloop :
Save m0 to m3 to the state array.

biquad translated to assembler using software tricks

However, by rewriting the computation kernel somewhat it can be seen that there is no
particular need for special m0..m3 registers as these values can be read either directly
from a register or directly from memory.
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biquad :
ld r10 ,DM0[r2 +0] ; m0
ld r11 ,DM0[r2 +1] ; m1
ld r20 ,DM0[r2 +2] ; m2
ld r21 ,DM0[r2 +3] ; m3

move ar0 , r0 ; ar0 points to indata
move ar1 , r1 ; ar1 points to outdata

prologue :
mul acr , #coeff0 , DM0[ar0 ++]
mac acr , #coeff1 , r10 ; m0
mac acr , #coeff2 , r11 ; m1
mac acr , #coeff3 , r20 ; m2
mac acr , #coeff4 , r21 ; m3
move.sat.rnd r21 , acr
move DM0[ar1 ++], r21

; Now things are shifted around as follows :
; new m0 = DM0[ar0 -1]
; new m1 = old m0
; new m2 = saturated accumulator
; new m3 = old m2
mul acr , #coeff0 , DM0[ar0 ++]
mac acr , #coeff1 , DM0[ar0 -2] ; m0
mac acr , #coeff2 , r10 ; m1
mac acr , #coeff3 , r21 ; m2
mac acr , #coeff4 , r20 ; m3
move.sat.rnd r20 , acr
move DM0[ar1 ++], r20

; Now things are shifted around as follows :
; new m0 = DM0[ar0 -1]
; new m1 = DM0[ar0 -2]
; new m2 = saturated accumulator
; new m3 = old m2

repeat 49, endloop
loop:

mul acr , #coeff0 , DM0[ar0 ++]
mac acr , #coeff1 , DM0[ar0 -2] ; m0
mac acr , #coeff2 , DM0[ar0 -3] ; m1
mac acr , #coeff3 , r20 ; m2
mac acr , #coeff4 , r21 ; m3
move.sat.rnd r21 , acr
move DM0[ar1 ++], r21

mul acr , #coeff0 , DM0[ar0 ++]
mac acr , #coeff1 , DM0[ar0 -2] ; m0
mac acr , #coeff2 , DM0[ar0 -3] ; m1
mac acr , #coeff3 , r21 ; m2
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mac acr , #coeff4 , r20 ; m3
move.sat.rnd r20 , acr
move DM0[ar1 ++], r20

endloop :

ld r10 , DM0[ar0]
ld r11 , DM0[ar0 -1]
ld r12 , DM0[ar1 -1]
ld r13 , DM0[ar1 -2]
st DM0[r2+0], r10
st DM0[r2+1], r11
st DM0[r2+2], r12
st DM0[r2+3], r13
ret

Operation list proposal:

In other words, by rearranging the order of operations and move some of the data into
special purpose registers, a MAC unit with a very limited set of operationsis available:

• MUL acr, op1, op2

• MAC acr, op1, op2

• mat.sat.rnd ACR, world

However, if you are optimizing for power, you might want a hybrid solution, which does
not require the kernel to read an identical value from memory several times a day.

Schematic

Left as an exercise for the reader.
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11 PFC Unit Solution Proposals

Solution proposal for 4.1

a) 1 delay slot for unconditional branches

b)
// One nop instruction is needed in this pipeline between
// arithmetic operations .
add r3 ,r0 ,r1
nop
add r3 ,r2 ,r3

c–d) Let us create the following jump instructions with three delay slots each.

• jump.eq OpA, OpB, targetaddr

• jump.neq OpA, OpB, targetaddr

• jump.lt OpA, OpB, targetaddr

Program 1

set r2 ,10
nop

jump.lt r0 ,r2 ,skip
nop ; Delay slot 1
nop ; Delay slot 2
nop ; Delay slot 3

add r0 ,r0 ,55
jump.eq r14 ,r14 , endprog ; No need for uncond . jump
nop ; Delay slot 1
nop ; Delay slot 2
nop ; Delay slot 3

skip:
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set r3 ,1
add r0 ,r0 ,48
jump.neq r1 ,r3 , endprog
nop ; Delay slot 1
nop ; Delay slot 2
nop ; Delay slot 3
add r0 ,r0 ,32

endprog :

Bonus question: What does program 1 do? 1

Program 2

; Use loop unrolling to avoid need for repeat loop
set r14 ,0 ; Constant 0
set r15 ,18 ; Loop counter

loop:
ld r2 ,[r0]
add r0 ,r0 ,1
st [r1],r2
add r1 ,r1 ,1
add r15 ,r15 ,-1
ld r2 ,[r0]
jump.neq r15 ,r14 ,loop
add r0 ,r0 ,1 ; Delay slot 1
st [r1],r2 ; Delay slot 2
add r1 ,r1 ,1 ; Delay slot 3

; Total cost: 182 clock cycles .

1Answer to bonus question: 51-01 seulav eht rof desu eb dluohs F-A ro f-a rehtehw syas galF .IICSA
ni lamicedaxeh ot 51 ot 0 morf eulav a strevnoC
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Solution proposal for 4.2

The original version of this question was constrained in such a way that an easy imple-
mentation of the hardware was possible (as long as you realize that it is possible to unroll
the loops), whereas this version of the exercise was constrained in such a way that a more
advanced PC FSM had to be designed. For program 2, this means that we have to use
a zero overhead loop instruction. For program 1 it means that we probably need to have
jumps with few delay slots (or none at all) Luckily program 1 is constrained in such a
way that the execution cost is mostly irrelevant.

Therefore we need a zero overhead hardware loop instruction. And the conditional
branches that we implement should have no delay slots (regardless of the performance
impact).

Proposed jump Instructions

jump.lt OpA , OpB , targetaddr ; Jump if OpA less than OpB
jump.eq OpA , OpB , targetaddr ; Jump if OpA is equal to OpB
repeat num , iterations ; Repeat num instructions iterations times

Encoding and Delay Slots

• jump.lt: Encoded as PFC OP == 10000. 0 delay slots (For a penalty of 3 clock
cycles)

• jump.eq: Encoded as PFC OP == 10001. 0 delay slots (For a penalty of 3 clock
cycles)

• repeat: Encoded as PFC OP == 10011. (Not relevant to discuss delay slots here.)
The number of iterations is encoded in PFC DATA[11:6] while the number of in-
structions in the loop is encoded in PFC DATA[5:0].

Note that the encoding of the number of iterations would be slightly different if a loop
with only one instruction is to be executed on this PC FSM. (See if you can figure out
why. . . )
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// Control signal generation:
 
always @* begin
   C1 = 0; C2 = 0; C3 = 0;
   if (PFC_OP[4:0] == 5'b10011) begin
     C1 = 1; C2 = 1; C3 = 2;
   end else if(last_insn) begin
     C1 = 2; C3 = 1;
   end
end
 

Hardware for loop counter
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Hardware for next PC generation

PFC_OP[1:0]
K

Flags from ALU

PFC_DATA_2 1
0

0
1Loopstart

0
1

1
1
0

1
0

RST

0
Next PC To PM

0
1

Loopstart

P
C

C7 C5
C6

C4

!PFC_OP[4]

Default value for C4-C7 is 0

PFC_OP == 1000-

[C7 = 1]

[C7 = 1, FORCE_NOP=1]

[FORCE_NOP=1]

[C6 = 1, C7 = 1

FORCE_NOP=1]

single_insn_loop == 1 [C7 = 1]

multi_insn_loop == 1 []

!final_iteration []
!final_iteration && (LAST_INSN == 1) [C5 = 1]

single_insn_loop = (PFC_OP == 5'b10011) && (last_insn == 1);
multi_insn_loop = (PFC_OP == 5'b10011) && (last_insn != 1);
final_iteration = (last_iter == 1) && (last_insn == 1);
 

final_iteration == 1

RST

DEFAULT

JMP1 JMP2

JMP3

LOOP

(The behavior for state Default is undefined when PFC_OP is
not equal to 1000-, 0----, or 10011.)

12

12

Contents is left as an exercise for the reader...

Note that K is not defined here. The contents is fairly trivial and left as an exercise for
the reader. (The convention used in this FSM is that outputs are specified in square
brackets.)

Assembly Program 1

set r2 ,10
nop
jump.lt r0 ,r2 ,skip
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add r0 ,r0 ,55
jump.eq r14 ,r14 , endprog ; No need for uncond . jump

skip:
set r3 ,1
add r0 ,r0 ,80 ; 48 + 32
jump.eq r1 ,r3 , endprog ; We negate the condition here to
add r0 ,r0 ,-32 ; avoid having to implement jump.neq

endprog :

Assembly Program 2

repeat 4, 36
ld r2 ,[r0]
add r0 ,r0 ,1
st [r1],r2
add r1 ,r1 ,1

Conclusions

This solution is certainly much easier on the assembler programmer (especially for the
second program), but as you can see, the hardware solution is far more complex. This
is a trade-off you can make as an ASIP designer. If you do not envision that a large
amount of program code needs to be written for your ASIP you may want to simplify the
hardware to reduce the verification cost. If, on the other hand, you expect that a huge
amount of code will be written for your processor it is probably worthwhile to spend extra
time on hardware development to reduce the cost of software development. (Although a
compiler will help with the software development effort, this still holds true, especially if
you envision that the critical parts of a program will still need to be written as optimized
assembler code.)
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Solution proposal for 4.3

+

'1' Imm[9:0]

Sign

Flag

'1'

'0'

'0' RF Stack

pc

0 1 2 3 4

0

1

2

3

0 1

C0

C1

Push

Pop

[15:0]

PC[15:0]

Sign:
  Output[15:0] = {6{Imm[9]}, Imm[9:0]};
 

Control Table:
 
     C0  C1  Push Pop
OP1:  2   0   0   0   ;PC++
OP2:  2   1   0   0   ;PC=PC+sign.ext.(Imm.)
OP3:  3   -   0   0   ;PC=PC  
OP4:  1   -   0   0   ;PC=RF
OP5:  2   1   1   0   ;Push(PC), PC=PC+sign.ext.(Imm.)
OP6:  1   -   1   0   ;Push(PC), PC=RF 
OP7:  4   -   0   1   ;PC=Pop(PC)
OP8:  2   2   0   0   ;if(flag) PC=PC+sign.ext.(Imm.) else PC++
OP9:  2   3   0   0   ;if(!flag) PC=PC+sign.ext.(Imm.) else PC++
RST:  0   -   0   0   ;Reset

0 1

0 21

Input

Output

// Stack control signals
C2 = 0; C3 = 1;
if (Push) begin
   C2 = 2; C3 = 1;
end else if(Pop) begin
   C2 = 1; C3 = 0;
end
 
 

C2

C3

 
Stack

Solution proposal for 4.4

There are many different ways to solve this exercise by trading off hardware off hardware
complexity against software complexity. See the notes at the end of this solution proposal
for some other other ideas about how this exercise can be solved.

Required PFC Instructions

Assumptions: It is actually not stated in the exam how wide PC should be, so we assume
a 16-bit PC in this exercise.

• jump immediate Unconditional branch. PC = PC + 1;. On next clock cycle: PC
= immediate

• jump.lte immediate Branch on less than or equal. PC = PC + 1. On next clock
cycle: PC = PC + 1. On next clock cycle: if(N || Z) then PC = immediate
else PC = PC + 1;

• jump.eq immediate Branch on equal. PC = PC + 1. On next clock cycle: PC =
PC + 1. On next clock cycle: if(Z) then PC = immediate else PC = PC + 1;

• repeat immediate Repeat next instruction: loopcounter = immediate; PC =
PC + 1;
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• jal reg, immediate Jump and link. PC = PC + 1. On next clock cycle: reg = PC
+ 1; PC = immediate

• jump OpB Indirect jump. PC = PC + 1. On next clock cycle: PC = PC + 1.On
next clock cycle: PC = PC + 1. On next clock cycle: PC = OpB

• Normal instruction if (loopcounter != 0) then loopcounter-- else PC =
PC + 1;

Note 2: jal reg, immediate and jump OpB are used in order to handle call to subroutine
and return from subroutine. (This allows us to do some tricky things involving conditional
branches to subroutines where the return register (r31) is set in the delay slot.) (Actually,
we could probably manage to write these programs without having a jal instruction at
all, but at a slight performance loss.)

Assembly Code

// In this code it is assumed that r0 -r15 , all address registers ,
// all accumulator registers , and the status register can be
// modified by a called function . However , r16 -r30 must not be
// modified by a subroutine . (If it needs to be modified it needs
// to be stored first so that it can be restored later on.)
// Finally , r31 contains the return address .

// Note: Keep track of the delay slots when reading this code!
// ( Unconditional branches have 1 delay slot , conditional
// branches have 2 delay slots , and register indirect branches
// have 3 delay slots !)

// (main does not need to store r31 as it will never return )

main:
jal r31 , get_packet
nop

cmp r0 ,0 ; Set flags as if we used r0 - 0
jump.lte anerror
nop
nop

cmp r0 ,9
jump.lte worker
set r31 , before_update_outputs
nop

cmp r0 , 59
jump.lte anerror
nop
nop
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jal r31 , guiworker
nop

jump before_update_outputs
nop

anerror :
jal r31 , logerror
nop

before_update_outputs
jal r31 , update_outputs
nop
jump main
nop

worker :
// Store r31 on the stack
push r31

jal r31 , get_packet_operations
nop
cmp r0 , 0

jump.eq dosum
nop
nop

cmp r0 , 1
jump.eq dodiff
nop
nop

// Tail call optimization
pop r31
jump logerror
nop

dosum:
jal r31 , sum
nop

pop r31

jump r31
store DM0 [95] , r0
nop
nop
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dodiff :
jal r31 , diff
nop

pop r31
jump r31
store DM0 [96] , r0
nop
nop

sum:
push r31
jal r31 , get_current_buffer
nop
pop r31
move AR0 , r0

clr ACR0

repeat 100
add ACR0 , DM0[AR0 ++]

jump r31
sat ACR0
move r0 , ACR0
nop

diff:
push r17
push r16
push r31

jal r31 , get_current_length
nop

jal r31 , get_current_buffer
move r16 , r0

jal r31 , get_previous_buffer
move r17 , r0

; r16 now contains the current length
; r17 contains ptr1
; r0 contains ptr2

move AR0 , r17
move AR1 , r0
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clr ACR0

add r0 ,r0 ,-1

diffloop :
jump.neq diffloop
add ACR0 , ABS(DM0[AR0 ++]- DM1[AR1 ++])
add r0 ,r0 ,-1

pop r31

jump r31 ; And return from subroutine
move r0 , ACR
pop r16
pop r17

Alternative Solutions

Efforts have been made to keep the solution above fairly “mainstream” with few instruc-
tions that would not be found on a normal processor. However, it is possible to solve
it in a few different ways. For example, the solution above contains a “jump and link”-
instruction to handle call to subroutines. This means that the solution outlined above
requires quite a bit more support from the software, but requires easier hardware. A more
traditional solution would use a call/ret instruction pair which would automatically store
and load the return address from a stack (either in memory or a separate hardware stack).

Another way that could be used to simplify the assembly code a lot is to use a conditional
call instruction. This is not commonly found in real processors, but it could have simplified
main() and worker() quite a lot2.

Finally, a repeat instruction with support for more than one instruction could have been
used to simplify the diff() instruction. However, such a repeat instruction would need
to read the number of iterations from a register (which would make it troublesome to
implement in actual hardware when very few iterations must be supported). (But there
is nothing in the constraints listed in the exercise that would prohibit such a repeat
instruction.)

2In most processors there is little to gain from conditional calls however, as such a call would need to
setup the parameters for the subroutine call anyway. In such a situation you would have no need for the
conditional call, as the condition would be evaluated before setting up the parameters for the subroutine
call.
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12 AGU Solution Proposals

Solution proposal for 5.1

AR0

0

AR1

0

BOTTOM

0

TOP

0

STEP

0Ca Cb Cc Cd Ce

IMMEDIATE
RF

AR0 AR1

0 1

RF

OPERATION[0]

0 1

IMMEDIATE

2

STEP

0

=

TOP

0

1BOTTOM

Cf

11111

NEWADDR

NEWADDR

22

All mux control signals are of the
appropriate width for the mux.

All other wires are 16 bit wide
unless otherwise noted.

1

1

Cg 0 1 2 3

Address to memory

3

1

Ch

Operation Ca Cb Cc Cd Ce Cf Cg Ch
0000 1 0 0 0 0 x x x
0100 0 0 0 0 0 x 0 x
0110 2 0 0 0 0 0 2 2
1000 0 0 0 0 0 0 x 3
1011 0 2 0 0 0 1 2 1
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Solution proposal for 5.2

• Register + offset for both memories

• Post increment for both memories simultaneously

• Post increment for DM1, modulo addressing with variable step-size for DM0

• Special indirect addressing mode where DM0 is addressed using post increment
mode and the output of DM0 is sent as address into DM1

Part B: AGU Schematic and Control Table
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Note: The complete memory
architecture is not shown, only
the parts that the AGU is involved
with. (E.g. write data/write enable
signals are missing.)

C6

STEP
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O
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B

ADDRESULT
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R

0

1

0 1 C1 C20 1 2

S
T
E
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Control table:
Operation C1 C2 C3 C4 C5 C6 C7 C8 C9
Set STEP - - 0 0 - - 1 0 0
Set SIZE - - 0 0 - - 0 1 0
Set TOP - - 0 0 - - 0 0 1
Set AR0 0 0 1 0 - - 0 0 0
(Note: OpB should be set to 0 here)
Set AR1 - - 0 1 - - 0 0 0
DM0: Register + offset 0 0 0 0 0 - 0 0 0
DM1: Register + offset 0 0 0 0 - 0 0 0 0
Post increment for both 1 1 1 1 1 1 0 0 0
DM0: Modulo, DM1: Postincr. 1 2 2 1 1 1 0 0 0
Special indirect mode 1 1 1 1 1 2 0 0 0

// Creating the MODULOAR0 signal
always @* begin
 // (Unsigned comparison)
 if(ADDRESULT > TOP) begin
 MODULOAR0 = ADDRESULT - SIZE;
 end else begin
 MODULOAR0 = ADDRESULT;
 end
end
// Cost: One comparator, one adder,
// and one multiplexer

NOTE: All signals are 16 bit wide (except
for mux control signals.)
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Part C: Assembly Code

filter :
set AR0 , r0
set AR1 , r1
set SIZE , r2 ; buffersize in r2
set END , r3 ; last in r3
set STEP , r4 ; step in r4
CLR ACR
repeat 128
conv ACR ,DM0[AR0 %++] , DM1[AR1 ++]
ret

interleaver :
load r1 , DM0[r0 +31]
load r2 , DM0[r0 +33]
set AR0 , r1
set AR1 , r2

repeat 256, endloop
load r0 ,DM1[DM0[AR0 ++]] ; Special indirect addr -mode
store DM1[AR1 ++], r0

endloop :
ret

Solution proposal for 5.3

Required addressing modes for DM0:

• Modulo addressing, post-increment, step-size 1

• Address register + offset

Required addressing modes for DM1:

• Post increment with step size 1

Note that the hardware schematic on the next page is checking for equality before AR0
has been increased by 1 whereas the desired behavior in the given pseudo code is that
this check should happen after the samplesptr has been increased. This can be fixed
by decreasing the value written into the TOP register by one in the assembler program as
seen above. After this fix, the behavior is the same for both the pseudo code and the
assembler/hardware implementation in this solution proposal.1

1Why do it in this way as opposed to the pseudo code behavior? To reduce the critical path!
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Assembly Code

FIR_FILTER : add R2 ,R2 ,-1; Fix for quirky hardware (see below)
move AR0 , R0 ; we assume R0 contains samplesptr
move BOT , R1 ; and so on ...
move TOP , R2
move AR1 , R3
repeat 128 ; just the next instruction
mac ACC , DM0[AR0 %++] , DM1[AR1 ++]
ret

STORE_VAL : set AR0 , 59
ld R2 , dm0[AR0 +0]
move AR0 , R0 ; We assume addr is in R0
st DM0[AR0 +0], R1 ; We assume value is in R1
st DM0[AR0 +2], R2 ; Store parameter
st DM0[AR0 +4], R2
st DM0[AR0 +8], R2
st DM0[AR0 +16] , R2
st DM0[AR0 +32] , R2
ret

AGU Schematics
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Control Table

Operation Ca Cb Cc Cd Ce Cf
Set AR0 0 3 - - 0 0
Set AR1 2 0 - - 0 0
Set TOP 0 0 - - 1 0
Set BOT 0 0 - - 0 1
MODULO ADDR 1 2 1 1 0 0
AR0 + Immediate 0 0 0 0 0 0

Note that MODULO ADDR also includes post increment addressing for AR1 to DM1.

Solution proposal for 5.4

Exercise 5.2 was made relatively easy as asynchronous memories were allowed. This
allowed us to easily create the special indirect addressing mode where the output from
DM0 was sent as an address into DM1. (In a real ASIC, synchronous memories should
be used as it is hard to create a large and efficient asynchronous memory.)

An alternative would be to simply extend the pipeline when using memory accesses with
indirect addressing mode. However, in that case it would be tough to avoid data and
structural hazards. However, there is another way to allow the interleaver() function
to execute in less than 700 clock cycles. We can make an instruction which stores data
into DM1 while at the same time loading data from DM0. This can be done without
violating the constraints placed on us in the exercise (e.g. we are only allowed to use
single port memories and the register file has two read ports and one write port). (Such
an instruction would also be useful when copying data from one memory to another.)
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// A more realistic interleaver () function .
interleaver :

load r1 ,DM0[r0 +31]
load r2 ,DM0[r0 +33]
// Might need a NOP here depending on how the pipeline
// looks like
set AR0 , r1
set AR1 , r2

// The loop is unrolled four times to ensure that data
// hazards cannot occur. ( Depending on the pipeline it
// could be possible to unroll it fewer times , but four
// times is probably enough for most reasonable
// pipelines .)

// Note the need for a prologue and epilogue to the loop.
load r0 ,DM0[AR0 ++]
load r1 ,DM0[AR0 ++]
load r2 ,DM0[AR0 ++]
load r3 ,DM0[AR0 ++]

repeat 63, endloop
load r0 ,DM1[r0]
load r1 ,DM1[r1]
load r2 ,DM1[r2]
load r3 ,DM1[r3]
; The next instruction stores r0 into DM1
; and loads r0 from DM0
loadstore r0 ,DM0[AR0 ++], DM1[AR1 ++], r0
loadstore r1 ,DM0[AR0 ++], DM1[AR1 ++], r1
loadstore r2 ,DM0[AR0 ++], DM1[AR1 ++], r2
loadstore r3 ,DM0[AR0 ++], DM1[AR1 ++], r3

endloop :

load r0 ,DM1[r0]
load r1 ,DM1[r1]
load r2 ,DM1[r2]
load r3 ,DM1[r3]
store r0 ,DM1[AR1 ++]
store r1 ,DM1[AR1 ++]
store r2 ,DM1[AR1 ++]
store r3 ,DM1[AR1 ++]

ret
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13 Accelerated Instructions Solution
Proposals

Solution proposal for 6.1

There are a few different ways to solve this exercise, especially if you do not care about
a critical path from the memory and through the multiplier. However, the key to solving
the exercise at all is to realize that you will need read from dm0 100 times and write to
dm1 100 times during the repeat loop.

Scheduling table:
nr DM0 ROT DM1
1 newX = DM0
2 Y = DM0, X = newX
3 newX = DM0 tmp0 = A*X + B*Y
4 Y = DM0, X = newX tmp1 = C*X + D*Y DM1 = tmp0
5 newX = DM0 tmp0 = A*X + B*Y DM1 = tmp1
6 tmp1 = C*X+D*Y DM1 = tmp0
7 DM1 = tmp1

Operations 1, 2, and 3 constitute the prologue. Operations 4 and 5 are repeated 49 times.
The epilogue is operations 6 and 7.

• rot1: newX = dm0[ar0++];

• rot2: Y = dm0[ar0++]; X = newX;

• rot3: tmp0 = OpA*X+OpB*Y; newX = dm0[ar0++];

• rot4: dm1[ar1++] = tmp0; tmp1 = OpA*X+OpB*Y; Y = dm0[ar0++]; X = newX;

• rot5: dm1[ar1++] = tmp1; tmp0 = OpA*X+OpB*Y; newX = dm0[ar0++];

• rot6: dm1[ar1++] = tmp0; tmp1 = OpA*X+OpB*Y;

• rot7: dm1[ar1++] = tmp1;

The following assembly program will work:
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rotate_vector :
ld r4 ,dm0[r0]
ld r5 ,dm0[r0 +1]
ld r6 ,dm0[r0 +2]
ld r7 ,dm0[r0 +3]
move ar0 ,r1
move ar1 ,r2

rot1 ; Prologue
rot2
rot3 r4 ,r5

repeat 49, endloop
rot4 r6 ,r7
rot5 r4 ,r5

endloop :

rot6 r6 ,r7 ; Epilogue
rot7

ret
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FROM_DM0[15:0]

OpA OpB

TO_DM1[15:0]

C1 C2

C2

C3 C4

C5

newX Y

X

ALIGN

32
32

16

16
16

TMP0 TMP1

Note: Signed
16x16 multipliers

Content of ALIGN: assign out[15:0] = in[30:15];

Insn C1 C2 C3 C4 C5
rot1 1 0 0 0 -
rot2 0 1 0 0 -
rot3 1 0 1 0 -
rot4 0 1 0 1 0
rot5 1 0 1 0 1
rot6 0 0 0 1 0
rot7 0 0 0 0 1

101



CHAPTER 13. ACCELERATED INSTRUCTIONS SOLUTION PROPOSALS

Solution proposal for 6.2

How to modify the pipeline:

You will need to modify the MAC unit and make sure that it can send the result back
to DM1. (There is no need to modify the AGU unit as the addressing used in this code
snippet are standard post increment addressing modes that any normal DSP processor
would have.)

Schematics

*

S_0

* *

SAT

To DM1

C_0 S_1 C_1 S_2 C_2

1 0

S_1

1 0

S_2

1 0

S_0

1 0

0

From DM0

Ca

Cb

Cb

Cb

1 0

C_1

1 0

C_2

1 0

C_0

From RF

Cc

Cc

Cc

Control table

Operation Ca Cb Cc
nop - 0 0
clearsamples 1 1 0
move coeff0, reg - 0 1
fir 3 0 1 0
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init_fir :
clearsamples
clearsamples
clearsamples
move coeff0 , r5 ; val5
move coeff0 , r4 ; val4
move coeff0 , r3 ; val3
move ar0 , r1 ; In the AGU
move ar1 , r2 ; In the AGU
ret

Solution proposal for 6.3

This is one possible version of pseudo assembly code for Read1bit().
Read1bit :

load r0 , [r15] // CurrentAddress is in R15
leftshift r1 , 1, r14 // 1 << CurrentBit (which is in R14)
and r0 , r0 , r1 // Memval & Bitmask

bne bitwas1
set r0 ,1 // Set Bit = 1 in delay slot

set r0 ,0 // Z flag was set

bitwas1 :
add r14 ,1, r14 // CurrentBit ++
cmp r14 ,16

bne no_new_word
nop

set r14 ,0 // CurrentBit = 0
add r15 ,1, r15 // CurrentAddress ++

no_new_word :
ret // Return value is in r0

Assumptions:

• The processor has full forwarding.

• A conditional branch is predicted as not taken. If this is wrong, it costs 3 clock
cycles to flush the pipeline.

• A load from memory takes 2 clock cycles to complete. The processor will stall if the
program tries to use the loaded value too early.

• A return takes 3 clock cycles to complete.
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Best case: The first bne is not taken. The second bne is not taken. The number of
executed instructions are: 13. Plus 1 extra clock cycle for the load and 2 extra clock
cycles for the return. The best case is 16 clock cycles.

Worst case: Both bnes are taken. The number of executed instructions are: 10. Plus 1
extra clock cycle for the load, 2 extra clock cycles for the return, and 2 × 3 extra clock
cycles to flush the pipeline when both bnes are wrong. The worst case is therefore 19
clock cycles.

• The AGU has to be modified to support a 4-bit counter used to index bits.

• After the memory you should insert a multiplexer to select the correct bit as indi-
cated by the CurrentBit signal.

CurrentBit

1

CarryCarry will enable
normal address
counter in AGU.

CurrentBit is sent to the
pipeline stage after the

memory

4

4

New hardware in AGU

New hardware after memory

CurrentBit after
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number of
pipeline stages

m
e
m

v
a
l[

0
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memval[15:0]
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1
5

]

15

Enable read1bit operation 1 0

out[15:0] = {15'b0, in}

16

1

16

1 11

To RF

(memval is the data output from the memory)

Conclusion: If you use Read1bit quite often the extra hardware cost is negligible next
to the performance increase you will get!
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14 Solution Proposal for the Design
Challenge

14.1 Correction checklist

Since you have probably not created exactly the same solution that I propose in this
chapter I have the following checklist that should allow you to check whether your solution
is correct. I also encourage you to team up with other course participants and cross check
your solutions.

For all functions implemented in assembler:

• Check that the assembler code performs the correct function

• Check that the appropriate number of delay slots are used for branches

• Check that the cycle cost constraints of the function is ok

• Check that the program memory cost constraints of the function is ok

For all hardware modules:

• Check that all instructions used in the assembler programs are actually implemented
in at least one hardware unit as appropriate.

• Check that it is possible to perform a NOP instruction (e.g., some hardware registers
shouldn’t change unless required by the instruction)

• Check that there are no combinational loops

• Check that the hardware performs as required for each instruction (by using the
control tables)

14.2 A Note on the Proposed Solutions

I have tried to keep the assembly instruction set fairly general. However, for many func-
tions I have also discussed alternative solutions. Also note that in my solution proposal
I have stayed away from solutions that are likely to result in a long critical path.
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One example of this is that I’ll place a register in the MAC unit to immediately register
the values fetched from the data memories. Another example is that I’ll put a register in
the ALU before sending the flags to the PC module.

However, as there are no constraints listed in the exercise, feel free to ignore these con-
straints for your solutions.

14.2.1 A note on delay slots

I have decided to use 3 delay slots for my conditional branches. In fact, it would be
possible to reduce this based on the given pipeline, but I’m using this number to avoid
a possible critical path from OPA/OPB, through the ALU, through the PC and to the
address input of the program memory.

14.3 Function 1: sanitize buffer values

Notes

One iteration of the loop needs to execute in 6 clock cycles or less. This is hard to achieve
due to data hazards effect since the pipeline has no forwarding.

Solution

Use loop unrolling to mitigate pipeline hazards. Use min/max instructions instead of
conditional branches to reduce the number of instructions in the loop.
; Buffersize in r0
; Technique : Unroll loop 3 times

set AR0 , inbuffer
set AR1 , outbuffer
set r14 ,0

loop:
add r0 ,-1,r0
ld r1 , DM1[AR0 ++]
ld r2 , DM1[AR0 ++]
ld r3 , DM1[AR0 ++]
max r1 ,-230,r1
max r2 ,-230,r2
max r3 ,-230,r3
min r1 ,5423 , r1
min r2 ,5423 , r2
min r3 ,5423 , r3
lsl r1 ,2,r1 ; r1 = r1 << 2
lsl r2 ,2,r2
lsl r3 ,2,r3
bne r0 ,r14 ,loop
st DM1[AR1 ++], r1 ; Three delay slots
st DM1[AR1 ++], r2 ;
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st DM1[AR1 ++], r3 ;

ret
nop

Alternative solutions

It would be possible to combine the min and max instruction into one instruction. How-
ever, since we can only read two operands from the register file at the same time, this
would mean that we would have to specify at least one of the boundaries separately. For
example:

set highboundary 5423
set lowboundary -230
...
...
ld r2 , dm0[ar0 ++]
minmax r0 ,r0
minmax r1 ,r1
minmax r2 ,r2

We could of course also include the left shift in this minmax instruction. Finally, we could
include support for this instruction in the MAC unit, which would allow us to combine
the load, min, max, and shift into one instruction. (Although this wouldn’t really fit into
the pipeline as discussed below.)

14.4 Function 2: butterfly

Notes

This function looks a bit bit weird as it is probably intended to do a butterfly calculation
inside an FFT. However, the calculations are done using integer arithmetic which is quite
odd. In reality I would probably like to discuss this code with the application engineers
who proposed it, but for the sake of the design challenge, lets see if we can actually
implement this in a relatively reasonable manner.

There are 6 loads, 4 stores, 4 multiplications and 6 add/subtracts. (Excluding address
calculations.) We also need one return operation. Naively, that would mean a total of 21
instructions.

Unfortunately the indata and result address calculations are somewhat hard to perform.
For example, to calculate indata[i+j+1] needs 2 constants and two register values:

• i: Register value

• j: Register value

• indata pointer: Constant
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• 1: Constant

While we can reduce the number of constants by merging the indata pointer and the 1
into one constant, we will still need to supply 3 operands to the load instruction. This is
unfortunately not possible as we can only supply two operands at the same time in this
architecture.

That is, we either need to use an address register or use extra instructions to calculate
for example i + j. Note also that the situation is even worse for store instructions since
we also need to supply the value to be stored.

Solution

It is clear that we need to overlap some of the operations described above in some way.
We also need to solve the address calculation problem.

At a first glance it would seem obvious that we can use the fact that the memory can be
connected to the MAC unit as seen in the pipeline figure. However, a reasonable hardware
design of the MAC unit will register the values fetched from the memory immediately to
avoid a long critical path.

This means that it will be tricky to introduce an instruction that loads values from the
memories, performs an operation on those values and writes back the result to the general
purpose register file. The pipeline for such an instruction would be one register longer
than the normal pipeline, opening the door for structural hazards.

So if we use this approach we would need to store values in the accumulator register and
read out that value at a later point.

Something like this approach should work:
; We assume R0 contains i, R1 contains j, and R2 contains c
set AR0 , indata + r0
set AR1 , coeff + r2 ; r2 contains c

mul.sat ACR0 , DM0[AR0 ++ + R1] * DM1[AR1 ++]
mac.sat ACR0 , -DM0[AR0 -- + R1] * DM1[AR1]
mul.sat ACR1 , DM0[AR0 ++ + R1] * DM1[AR1 --]
mac.sat ACR1 , DM0[AR0 -- + R1] * DM1[AR1 ++]

; For mac.sat we need to saturate both the multiplication
; and the addition / subtraction ! ( bletch !)

ld r3 , DM0[AR0 ++]
move.int r5 , acr0 ; Move integer result to r5
ld r4 , DM0[AR0 --]
move.int r6 , acr1
add.sat r7 ,r3 ,r5 ; tmp7
sub.sat r9 ,r3 ,r5 ; tmp9 ; Rescheduled to avoid data hazard for tmp8
add.sat r8 ,r4 ,r6 ; tmp8
sub.sat r10 ,r4 ,r6 ; tmp10
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set AR0 , outdata + r0
st DM0[AR0 ++], r7
st DM0[AR0 --], r8
st DM0[AR0 ++ + R1], r9
ret
st DM0[AR0 -- + R1], r10

; Exactly 20 instructions , yay!

14.5 Function 3: fir()

Notes

This is quite straight-forward. However, we need to have a modulo addressing mode to
handle this function efficiently. It is also necessary to use a repeat instruction to handle
the clock cycle and program memory constraints.

Solution

Note that we decrement r4 by one before assigning it to TOP. This means that we can
shorten the critical path of the AGU by comparing AR0 with TOP instead of comparing
AR0+1 with TOP.

add r4 ,-1,r4 ; decrement end_ptr by one
set AR0 , r2 ; fir_ptr
set BOT , r3; start_ptr
set TOP , r4; end_ptr
set AR1 , r1

st DM0[AR0 %++] , r0 ; newsample
; AR0 %++ - Increment AR0 using circular buffer mode

clr ACR0
repeat 32
MAC ACR0 , DM0[AR %++] , DM1[AR1 ++]
ret
move.rnd.sat r0 , ACR0

; 42 clock cycles

14.6 Function 4: getbits()

; r0: val , r1: numbits , r2: offset
set r3 ,1 ; The set and lsl could be replaced by
nop ; a table lookup if we want to optimize
nop ; the execution speed of this function .
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lsl r4 ,r1 ,r3 ; r0 = r3 << r1
nop
nop
lsr r0 ,r2 ,r0 ; r0 = r0 >> r2
add r4 ,-1,r4
nop
nop
and r0 ,r0 ,r4
ret ; We could move up ret , but then
nop ; we might not be able to use

; r0 immediately after we return
; from the subroutine .

; A total of 13 clock cycles which fulfills the
; constraints placed on us.

14.7 Function 5: preprocess()

Notes

As we have no clock cycle or program memory constraints here, it makes sense to imple-
ment this in such a way that we minimize the amount of hardware.

This function was just included to make sure that we have a branch instruction separate
from branch if equal/not equal. (Although it is possible to solve this exercise and only
use branch if not equal. But that solution is very cumbersome so I didn’t include it here.)

Solution
; We assume a is stored in r0 and b in r1
;
; We also assume we should pass the return value in r0 ( although this
; is not stated in the exercise )

bgt r0 ,r1 , abigger ; bgt - branch if r0 greater than r1
set r2 ,56
set r3 ,12
nop

bgt r3 ,r1 , b_smaller
nop
nop
nop

ret ; return a + 12
add r0 ,r0 ,12

b_smaller :
ret
add r0 ,r1 ,12 ; return b + 12
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abigger :
bgt r0 ,r2 , abigger_56
nop
nop
nop

ret ; return b - 56
add r0 ,r1 ,-56

abigger_56 :
ret
add r0 ,r0 ,-56 ; Return a - 56

14.8 Function 6: prepare data()

Notes

As I mentioned during the lecture, there was a bug in the design challenge. The intention
was that the cycle constraints for this task would be around 700 cycles instead of 1900
cycles. Even so, the solution is fairly trivial, except for the bitreversed part.

set AR0 , indata
set AR1 , 0
set r15 , outdata
set BITREVSTEP , 0000001000000000 b ; Configurable stepsize
set r14 ,0 ; A zero for bne comparison ...

set r0 , 32 ; Loop is unrolled 4 times
loop:

ld r1 ,DM0[AR0 ++]
ld r2 ,DM0[AR0 ++]
ld r3 ,DM0[AR0 ++]
ld r4 ,DM0[AR0 ++]
ld r5 ,DM0[AR0 ++]
ld r6 ,DM0[AR0 ++]
ld r7 ,DM0[AR0 ++]
ld r8 ,DM0[AR0 ++]
add r0 ,-1,r0 ; Decrement loop counter in advance
avg r1 ,r1 ,r2 ; Average operation
avg r3 ,r3 ,r4
avg r5 ,r5 ,r6
avg r7 ,r7 ,r8
store DM0[ bitrev (AR1 += BITREVSTEP )+ r15], r1
; AR1 += BITREVSTEP is a post - increment operation here
bne r0 ,r14 , loop
store DM0[ bitrev (AR1 += BITREVSTEP )+ r15], r3 ; <-- delay slot
store DM0[ bitrev (AR1 += BITREVSTEP )+ r15], r5 ; <-- delay slot
store DM0[ bitrev (AR1 += BITREVSTEP )+ r15], r7 ; <-- delay slot
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14.9 Function 7: dot16()

Notes

Nothing really tricky here except that we need to scale the accumulator at some point.
Also, we need to figure out how many guard bits we’ll need. Since we are using fractional
values in this FIR filter, the range of the result after 16 iterations is [-16,16). Therefore
we’ll need 4 guard bits. Also, it makes sense to have an ACR register which is 32 bits wide,
except for the guard bits. (Since we get a 32-bit result out of a 16x16 bit multiplication.)

Solution

set AR0 , r0 ; ptr1
set AR1 , r1 ; ptr2

clear ACR0
repeat 16
mac. fractional ACR0 , DM0[AR0 ++] * DM1[AR1 ++]

scale3 acr0 ; Shift ACR0 right 3 steps ( arithmetic shift)
move.rnd.sat r0 , ACR0
ret
nop

14.10 Function 8: find val()

Notes

No constraints, so we’ll create a straight forward implementation.
set r1 , 128 ; r1 = index
set r2 , 64 ; r2 = step
set r15 , 1 ; For while () comparison
set AR0 , data ; pointer to data array

loop:
bgt r15 ,r2 , finished
ld r3 ,DM0[AR0 + r1]
nop
nop

bne r3 , r0 , continue
nop
nop
nop

and r0 ,r1 ,r1 ; Fancy way of moving r1 to r0 without having an
; explicit move instruction .
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ret
nop

continue :
bgt r3 , r0 , toosmall
nop
nop
nop

sub.sat r1 ,r1 , r2 ; We ’ll use sub.sat here to avoid the
; need for a separate sub instruction

bgt r0 ,r3 , loop ; Well , we could have used an unconditional
; jump but why add one now if we haven ’t
; needed it yet?

lsr r2 ,r2 ,1 ; Since step is unsigned we can shift it
nop ; right instead of using a division with 2
nop ; (if it was signed , an arithmetic shift

; right will round in the wrong direction )

toosmall :
add r1 , r1 , r2
bgt r3 ,r0 , loop
lsr r2 ,r2 ,1
nop
nop

finished :
and r0 ,r1 ,r1 ; Fancy way of moving r1 to r0 without having an

; explicit move instruction .
ret
nop

113



CHAPTER 14. SOLUTION PROPOSAL FOR THE DESIGN CHALLENGE

14.11 Final instruction list

• add OpW, OpA, OpB

• add.sat OpW, OpA, OpB

• and OpW, OpA, OpB

• avg OpW, OpA, OpB ; OpW is set to the average value of OpA and OpB (signed)

• bgt OpA, OpB, branchtarget ; Branch if OpA is greater than OpB. 3 delay slots

• bne OpA, OpB, branchtarget ; Branch if OpA and OpB aren’t equal. 3 delay slots

• call branchtarget ; Obviously we will need a call subroutine as well. (1 delay
slot)

• clr ACRx ; Set accumulator to 0

• ld OpW, DM0[ADDRMODE]

• ld OpW, DM1[ADDRMODE]

• lsl OpW, OpA, OpB ; OpW = OpB << OpA

• lsr OpW, OpA, OpB ; OpW = OpB >> OpA

• mac.fractional ACR0, DM0[ADRMODE for AR0] * DM1[AR1++] ; Fractional mul-
tiplication

• mac.sat ACRx, DM0[ADDRMODE for AR0] * DM1[AR1--] ; performs sat after mul-
tiplication and after addition (bletch)

• mac.sat ACRx, -DM0[ADDRMODE for AR0] * DM1[AR1] ; performs sat after multi-
plication and after addition (bletch)

• max OpW, OpA, OpB ; Signed

• min OpW, OpA, OpB ; Signed

• move OpW, ACRx

• move.rnd.sat OpW, ACRx ; OpW = SAT(ROUND(ACRx))

• mul.sat ACRx, DM0[ADDRMODE for AR0] * DM1[AR1++] ; performs sat after mul-
tiplication

• mul.sat ACRx, DM0[ADDRMODE for AR0] * DM1[AR1--] ; performs sat after mul-
tiplication

• repeat num iter ; Execute next instruction num iter times (num iter < 26). Must
be larger than 2

• ret ; Return from subroutine, 1 delay slot
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• scale3 ACRx ; ACRx = ACRx >> 3 (Arithmetic shift right)

• set ARx, OpA + OpB ; set ARx, OpB is emulated as set AR0, 0 + OpB

• set BITREVSTEP, OpA

• set BOT, OpA

• set OpW, OpA ; Can be used to set a register to an immediate value

• set TOP, OpA

• st DM0[ADDRMODE], OpA

• st DM1[ADDRMODE], OpA ; We will most likely need this as well...

• sub.sat OpW, OpA, OpB ; OpW = SAT(OpA - OpB)

14.12 Required addressing modes

• ARx++

• ARx--

• ARx

• ARx++ + OpB

• ARx-- + OpB

• ARx%++ ; Circular addressing

• bitrev(ARx += BITREVSTEP)+OpB ; Bit reversed addressing + base offset

(The reason that we are limiting our addressing modes for DM1 in the MAC instruction
is that we only have 7 bits to encode both the instruction and the addressing modes in.
If we had a generic addressing mode for both DM0 and DM1 here we wouldn’t be able
to fit everything into the instruction word.) Note that the bitreversed addressing mode
is post-increment!
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14.13 ALU

OpA

{OpB[15],OpB[15:0]}

{OpA[15],OpA[15:0]}
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BITREV

Cc Cc
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OpA

OpB

Truncate
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=
OpA

OpB

Branch flag
to PC module

RESULT[15:0]

Cd

Ce

0
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2
 
3
 
4
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SHIFT box:
out [15:0] = in [15:0] >> OpA;

SAT box:
if (in [16] != in [15]) begin

if(in [16]) begin
out [15:0] = 16’ h8000;

end else begin
out [15:0] = 16’ h7fff;

end
end else begin

out [15:0] = in [15:0];
end
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Truncate box:
out [15:0] = in [15:0]

BITREV box:
out [15:0] = in [0:15]; // (This is cheating since this

// syntax doesn ’t work in Verilog ...)

Rightshift 1:
out [15:0] = in [16:1];

Control table:

INSN Ca Cb Cc Cd C
add 0 x x 3 x

add.sat 0 x x 2 x
sub.sat 1 x x 2 x

max 1 1 x 1 x
min 1 0 x 1 x
lsl x x 1 6 x
lsr x x 0 6 x
bne x x x x 1
bgt 1 1 x x 0
set x x x 5 x
and x x x 0 x
avg 0 x x 4 x
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14.14 PC
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]

RET

CALL
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LL
 [

C
4
 =

 2

C
5
 =

 1
, 
C

6
 =

 1
]

PFC_DATA

HW STACK

In the FSM, signals specified within brackets (such as [C1 = 1]), are output signals from
the FSM for that transition. To minimize clutter in the FSM, if a signal is not mentioned
as having a specific value, the value of that signal is assumed to be 0.

Note that the control signals from the instruction decoder reaches PC combinatorially!

Also note that the results are undefined if you put a PFC instruction into a delay slot.
(Or if you try to use repeat on a PFC instruction.)

The branch flag from the ALU is delayed one clock cycle inside the ALU unit due to the
register, which means that conditional branches will have 3 delay slots. (But unconditional
branches have only 1 delay slot.) Also note that the ALU is responsible for handling the
two different types of conditional branches that we have.
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14.15 AGU

We need two address registers, AR0 and AR1.

For load/store instructions, any addressing modes and any memory can be used.

For convolution, only AR1++, AR1, and AR1– can be used for DM1 whereas any ad-
dressing mode can be used for DM0 as long as AR0 is used.

 
 

 

1

1 0

BOT

TOP AR0

=

1 0

Address to DM1

Cd 2

AR1

0 1
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From OpA

Cb 0 1
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0 1
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Main AGU
result

Restricted AGU
result

Address to DM0

0Ce 1
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Main AGU
result

0 1 Ci

AGUOP

 

0 1

-1

Ch

1

Restricted AGU
result

1 0

1 0Cf 2

-1

From OpA

0 1 Cg

From OpB AGUOP

Main AGU
result

From OpB

AGUOP

0 1 Cl

AGUOP

1 0Ck 2

AR0 AR1

Cj

0 1 Cm

BITREV

3

Control table for AGU:

INSN Ca Cb Cc Cf Cg Cj Cm
set TOP 0 1 0 x x x x
set BOT 0 0 1 x x x x
set BITREVSTEP 1 0 0 x x x x
set ARx,OpA+OpB 0 0 0 2 0 0 x
ARx++ 0 0 0 0 1 0 x
ARx– 0 0 0 1 1 0 x
ARx++ + OpB 0 0 0 0 1 0 0
ARx– + OpB 0 0 0 1 1 0 0
ARxbitrev(ARx += 0 0 0 3 1 0 1
BITREVSTEP)+OpB
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There are also quite a few special cases in this AGU unfortunately, as specified below:

Cd:

If AR1 is not updated: Set to 0
If AR1 is updated (during non-convolution operation): Set to 2
During a convolution (i.e. mac or mul): Set to 1 if AR1 should be updated

Ce:

If AR0 should not be updated: Set to 0
If AR0 should be updated: Set to 1

Ch:

During convolution and AR1++ selected for DM1 addressing: Set to 0
During convolution and AR1– selected for DM1 addressing: Set to 1

Ci:

When AR0 is selected: Set to 1
When AR1 is selected: Set to 0
During convolution: Set to 1
If none of the above: Don’t care

Ck:

When addressing DM0 using mode ARx++ + OpB: Set to 1
When addressing DM0 using mode ARx– + OpB: Set to 1
When addressing DM0 using other addressing mode: Set to 0
Otherwise: Don’t care

Cl:

When addressing DM1 using mode ARx++ + OpB: Set to 2
When addressing DM1 using mode ARx– + OpB: Set to 2
When addressing DM1 using register AR0: Set to 1
When addressing DM1 using register AR1: Set to 0
During convolution: Set to 0
Otherwise: Don’t care

BITREV box:
out [15:0] = in [0:15]; // (NOTE: Incorrect Verilog syntax )
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14.16 MAC

1 0

ACC0 36
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Result to RF = ACC_WB[15:0];
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and selects which accumulator to use

36

36

36

0

3

Control table for MAC:

INSN Ca Cb Cc Cd Ce CW
nop x x x x x 0
mul.sat 1 0 1 0 3 1
mac.sat 1 tmp1 0 0 3 1
mac.fractional 0 0 0 x 2 1
clr 3 0 1 x x 1
move.int 3 0 0 x 1 0
move.rnd.sat 2 0 0 1 2 0
scale3 3 0 0 x 0 1

Note: tmp1 is set to 1 when subtracting from the accumulator instead of adding

FRACT:
out [35:0] = { {4{ in [31]}} , in [30:0] , 1’b0};

SAT16:
if(in [31:15] != {17{ in [31]}}) begin
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out [35:0] = {{21{ in [31]}} , {15{˜ in [31]}} };
end else begin

out [35:0] = { {4{ in [31]}} , in [31:0]};
end

ROUND VECTOR = 36’h0 0000 8000;

SAT:
if (Cd) begin // Cd controls whether we saturate for

// move.rnd.sat or for mac.sat
if(in [35:15] != {21{ in [35]}}) begin

out [35:0] = {{21{ in [31]}} , {15{˜ in [31]}} };
end else begin

out [35:0] = in [35:0];
end

end else begin
out [35:16] = 20’ hxxxxx ; // Don ’t care as these bits are not

// used when writing to RF
if(in [35:31] != {5{ in [35]}}) begin

out [15:0] = { in [35] , {15 {˜in [35]}}};
end else begin

out [35:0] = in [31:16]; // Scale down by 16 as these
// bits are used when reading out to RF

end
end

SCALE:
out [35:0] = { {3{ in [35]}} , in [35:3]}; // Arithmetic shift right by 3
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15 Version history

• v1.0 Original version.

• v1.1 Fixed wrongly numbered solutions for exercise 2.*

• v1.2 Fixed right shift by 8 in exercise 3.1. Added solution proposal for 2.2. Used
the correct MSB bit in exercise 3.3 (35 instead of 36).

• v1.3 Added exercises for tutorial 1. Moved exercise 4.4 to 4.2 General cleanup of
the document. Thanks to Olle Seger for help with some of the exercises for tutorial
1.

• v1.4 Added an IIR filter task (biquad) to the MAC chapter.

• v1.5.0 Clearer problem 1.2 and better solution. Improved syntax highlighting.
(OG+FS)

• v1.5.1 Corrected formulation and answer of 5.2. LaTeX, grammar and consistency
improvements. (OG)

• v1.5.2 Improved formatting. (OG)

• v1.5.3 Included diagrams in solutions for the ALU exercises (FS)
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