
Solutions for TSEA26 exam on 2010-01-14

Andreas Ehliar

October 19, 2010

Note: Some RTL code is written in Verilog in these solutions. It is certainly ok to use
VHDL on the exam as well if you prefer that. The exact syntax of the RTL code is also
not very important as long as the meaning is understandable.

Question 1

a) Maximum possible value: |0.25| + | − 0.75| + |3.0| + |0.5| = 4.5 This will require 3
guard bits. (Actually, it is not quite 4.5 since we multiply at least one number with
0.11111...2.)

b) When decoding a conditional branch it is impossible to know in the decode stage
whether the branch should be taken or not since the condition may not be calculated
yet. Instead of stalling the pipeline until the condition is calculated a processor may
use delay slots instead, that is, fetching and executing one or more instructions after
the branch regardless of whether the condition is true or not.

c) In a real time system you can trust the result of static profiling since it is much better
to overestimate the amount of time a certain task may take than to underestimate
it. Dynamic profiling cannot be trusted to give reliable worst case execution times
unless the input data is very carefully constructed.

1

Question 2

Operation Ca Cb Cc Cd Ce
OP0 0 0 - 0 1
OP1 1 1 - 0 1
OP2 1 1 - 1 1
OP3 - - 0 - 0
OP3 - - 1 - 0

SAT:
if ((in[8:7] == 2’b00) || (in[8:7] == 2’b11)) begin

out = in[7:0];

end else begin

out = { in[8], {7 !in[8]}};
end

BITREV: out[7] = in[0]; out[6] = in[1];. . .

LEFTSHIFT: out = in << B[2:0];

Comments:
Note that this solution utilizes the fact that it is cheaper to use one shifter combined
with two bitreverse-operations compared to using two shifters. It also uses the fact that
|A−B| = |B − A|.

2

Question 3

Schematic of the accumulators

Schematic of the MAC datapath

3

Control table

Operation CW Cr Ca Cb Cc Cd Ce
OP0 0 - - - - - -
OP1 1 - 0 5 0 0 0
OP2 1 - 1 5 0 0 0
OP3 1 - 0 0 0 0 0
OP4 1 - 1 1 0 0 0
OP5 1 - - - - - 1
OP6 1 - 1 4 1 0 0
OP7 1 - 1 2 0 0 0
OP8 1 - 1 3 0 1 0
OP9 0 2 - - - - -
OP10 0 1 - - - - -
OP11 0 0 - - - - -

Content of boxes

FRACT: out[21:0] = { {5{in[15]}}, in[15:0], 1’b0};
ROUND: out[21:0] = 22’h000080;

EXTEND: out[21:0] = { {6{in[7]}}, in[7:0], 8’b0 };

SAT:
if (Cc == 1) begin

if ((in[21:15] == 7’h00) || (in[21:15] == 7’h7f)) begin

out = {in[21:8],8’b0};
end else begin

out = { {7 {in[21]}}, {15 {!in[21]}} };
end

end else begin

out = in;

end

4x: out[21:0] = {in[19:0], 2’b00};
0.5x out[21:0] = {in[21], in[21:1]};

Comments:
The tricky thing in this question is that you not only need to know how to design a MAC
unit, you also need to apply your knowledge on how to design a register file in order to
simplify the part that contains the accumulators.

The exam was not clear about where the rounding would start, so on this exam it would
be ok to use another round vector as long as it is relatively reasonable.

4

Question 4

Required addressing modes for DM0:

• Modulo addressing, postincrement, stepsize 1

• Address register + offset

Required addressing modes for DM1:

• Post increment with step size 1

Pseudo assembler code:

FIR_FILTER: add R2,R2,-1; Fix for quirky hardware (see below)

move AR0, R0 ; we assume R0 contains samplesptr

move BOT, R1 ; and so on...

move TOP, R2

move AR1, R3

repeat 128 ; just the next instruction

mac ACC, DM0[AR0%++], DM1[AR1++]

ret

Note that the hardware schematic on the next page is checking for equality before AR0
has been increased by 1 whereas the desired behavior in the given pseudo code is that
this check should happen after the samplesptr has been increased. This can be fixed by
decreasing the value written into the TOP register by one in the assembler program as
seen above. After this fix, the behavior is the same for both the pseudo code and the
assembler/hardware implementation in this solution proposal.1

STORE_VAL: set AR0, 59

ld R2, dm0[AR0+0]

move AR0, R0 ; We assume addr is in R0

st DM0[AR0+0], R1 ; We assume value is in R1

st DM0[AR0+2], R2 ; Store parameter

st DM0[AR0+4], R2

st DM0[AR0+8], R2

st DM0[AR0+16], R2

st DM0[AR0+32], R2

ret

1Why do it in this way as opposed to the pseudo code behavior? To reduce the critical path!

5

AGU Schematics

Control table

Operation Ca Cb Cc Cd Ce Cf
Set AR0 0 3 - - 0 0
Set AR1 2 0 - - 0 0
Set TOP 0 0 - - 1 0
Set BOT 0 0 - - 0 1
MODULO ADDR 1 2 1 1 0 0
AR0 + Immediate 0 0 0 0 0 0

Note that MODULO ADDR also includes post increment addressing for AR1 to DM1.

Comments:
This question not only examines whether you know how to design an AGU, it also examines
whether you realize which addressing modes that are used in a more or less realistic piece
of source code. Also, in case of the FIR FILTER code, I want to make sure that you realize
that it is necessary to set the address registers.

The STORE VAL function is not modeled on any particularly important computational
kernel. It is intended to showcase a few different addressing modes, but in the end, all
that is required is one addressing mode such as base register plus offset. For example, the
absolute addressing of dm[59] can easily be handled by setting the address register to 59
and then using the offset of 0. On the other hand, using just register indirect addressing

6

would not be possible within the alloted number of clock cycles. (Other solutions with
only one addressing mode is also possible!)

Question 5

How to modify the pipeline:

You will need to modify the MAC unit and make sure that it can send the result back
to DM1. (There is no need to modify the AGU unit as the addressing used in this code
snippet are standard post increment addressing modes that any normal DSP processor
would have.)

Schematics

7

Control table

Operation Ca Cb Cc
NOP - 0 0
CLEARSAMPLES 1 1 0
MOVE COEFF0, REG - 0 1
FIR 3 0 1 0

INIT_FIR:

CLEARSAMPLES

CLEARSAMPLES

CLEARSAMPLES

move COEFF0, R5 ; val5

move COEFF0, R4 ; val4

move COEFF0, R3 ; val3

move AR0, R1 ; In the AGU

move AR1, R2 ; In the AGU

ret

Comments:
This question can obviously be answered in many different ways. The main reason for
this question is to see whether you can reason about how to add non-standard instructions
(ASIP instructions if you will) to a normal DSP processor. I am particularly interested
in whether you can reason about modifications to the pipeline, like for example using the
memories in non-standard ways.

8

