
Examination

Design of Embedded DSP Processors, TSEA26

Date 2011-01-12
Room TER4
Time 14:00-18:00
Course code TSEA26
Exam code TEN 1
Course name Design of Embedded DSP Processors
Department ISY, Department of EE
Number of questions 5
Number of pages 8
(including this page)
Responsible teacher Andreas Ehliar
Phone number during 013-178405
the exam time
Visiting the exam room Around 15 and 17
Course administrator Ylva Jernling, 013-282648, ylva@isy.liu.se
Permitted equipment None, besides an English dictionary

Grading

Points Swedish grade
41-50 5
31-40 4
21-30 3
0-20 U

Important information:

• Answers can be given in English or Swedish. Don’t
write any answers on the exam sheet.

• When designing a hardware unit you should
attempt to minimize the amount of hardware
used. (Unless otherwise noted in the exercise.) A
correct but not justified answer may not give full
points on the question. Your number of points may
also depend on how easy it is for us to understand
and verify your answer.

• The width of data buses and registers must be speci-
fied unless otherwise noted. Likewise, the alignment
must be specified in all concatenations of signals or
buses. When using a box such as “SATURATE”
or “ROUND” in your schematic, you must (unless
otherwise noted) describe the content of this box!
(E.g. with RTL code).

• All numbers are in two’s complement format unless
otherwise noted.

1



Question 1: General knowledge (3p)

a) Explain, using at most two sentences, the major problem with this MAC unit. (1p)

{{8{OpA[15]}}, OpA, 16'b0}

SATURATE

0

*

OpB OpC

Out = { {8{In[31]}},In[31:0] }

16 16

40

ROUNDVECTOR

40
4040

40

+

16

To RF

b) When creating the architecture of a DSP processor, it is important to know the
area cost of various common components. Of the following four components, which
one is most area expensive and which one is least area expensive? (All components are
optimized for speed.) (1p)

• 16 bit multiplier

• 16 bit wide single port memory with an address space of 16 bits

• 16 bit 2-to-1 multiplexer

• 16 bit adder

c) Describe the most important corner case when implementing the following operation:
ABS(A[4:0]). (A is a two’s complement number.) (1p)

2



Question 2: Arithmetic Unit (10p)

Draw a schematic and a control table for an arithmetic unit capable of the following
operations:

• OP0: No operation

• OP1: RESULT = SAT(A + B)

• OP3: RESULT = SAT(A - B)

• OP4: RESULT = SAT(ABS(A))

• OP5: RESULT = SAT(ABS(A+B))

• OP6: RESULT = SAT(ABS(A-B))

• OP7: Set S flag to 0. Other flags should remain unchanged.

In addition, the ALU should also have the following flags:

• (N) Negative flag. (Set to 1 when RESULT is negative, otherwise set to 0.)

• (Z) Zero flag. (Set to 1 when RESULT is zero, otherwise set to 0.)

• (S) Saturation flag. (Set to 1 when saturation occurs, otherwise keeps it previous
value.)

Notes:

• Note: The only way for the S flag to get reset to 0 is by executing OP7.

• OP0 should not change the value of any flags.

• Result, A, and B are 8 bits wide.

3



Question 3: Address Generator Unit (15p)

In this exercise you should create an address generator unit. It should support the
addressing modes necessary to execute the following three functions under the specified
clock cycle constraints.

// This function must execute in less than 20 clock cycles.

// Inputs: ptr is passed in register r0

function dot13(ptr)

ptr0 = DM0[ptr+31]

ptr1 = DM0[ptr+33]

resultptr = DM0[ptr+35]

tmp = 0

for (i = 0; i < 13; i = i + 1)

tmp += DM0[ptr0++] * DM1[ptr1++];

endfor

DM0[resultptr] = SAT(ROUND(tmp))

endfunction

// This function must execute in less than 140 clock cycles

// Inputs: ptr0 is passed in register r0, ptr1 in r1

function filter(ptr0, ptr1)

tmp = 0

for(i=0; i < 128; i = i + 1)

tmp += DM0[ptr0+=step] * DM1[ptr1++]

if (ptr0 > end) then

ptr0 = start

endif

endfor

endfunction

// This function must execute in less than 700 clock cycles

// Inputs: ptr is passed in register r0

function interleaver(ptr)

ptr0 = DM0[ptr+31]

ptr1 = DM0[ptr+33]

for(i=0; i < 256; i = i + 1)

idx = DM0[ptr0++]

tmp = DM1[idx]

// You can decide whether to use DM0 or DM1 for the

// next line

DMx[ptr1++] = tmp

endfor

endfunction

4



Additional information:

• A memory address is 16 bit wide, and the memories are word-addressable

• Both DM0 and DM1 are 16 bit wide single port memories

• There are 32 general purpose registers that are 16 bit wide

• An instruction has two operands, OpA and OpB. OpA will always come from a
register and OpB may come either from a register or as a 16 bit immediate from
the instruction word.

• You may assume that the datapath has full forwarding. (Unless you do something
in your part of the design which would prohibit forwarding in some situations.)

• One instruction can be issued (in-order) each clock cycle.

• You may assume that all other paths are implemented in such a way that the
functions above can be implemented. For example, there is a repeat instruction,
and the MAC instruction can load both operands directly from memories.

• The functions must contain fewer than 100 instructions.

• If you don’t answer exercise b you can still get some points for exercise
c!

a) Select the addressing modes you will need to implement these three functions under
the specified clock cycle constraints. (3p)

b) Draw a schematic of your AGU. In this schematic you must also include how the
memories are connected to the AGU. You may use either synchronous or asynchronous
memory in this part of the exercise, but you must specify which one you are using. You
should also include a control table for your AGU. (7p)

(c) Write assembly code for the filter() and interleaver() function using the ad-
dressing modes supported by your AGU. (You don’t need to write assembler code for
the dot13() function, but your hardware should be capable of supporting that function
anyway under the given clock cycle constraints.) Hint: Be careful to avoid hazards by
rearranging code or inserting NOP instructions as appropriate! (4p)

d) In exercise b you were allowed to use either synchronous or asynchronous memory.
However, if you were going to create a real ASIC with a large memory (e.g. DM0 or
DM1), should you use synchronous or asynchronous memories? (1p)

5



Question 4: Program Flow Control Instructions (10p)

During the design of a simple DSP processor, the following functions have been deter-
mined to be the most important:

function main()

while(TRUE)

// get_packet() returns the return value in register r0

pkt_type = get_packet()

if (pkt_type <= 0) then

logerror()

else if(pkt_type <= 9) then

worker()

else if(pkt_type >= 59) then

guiworker()

else

logerror()

end if

update_outputs()

endwhile

endfunction

function worker()

optype = get_packet_operation() // Returns packet pointer in r0

if (optype == 0) then

DM0[95] = sum()

else if (optype == 1) then

DM0[96] = diff()

else

logerror()

endif

endfunction

// get_current_length(), get_current_buffer() and

// get_previous_buffer() executes in 10 clock cycles each.

// They all return the return value in register r0.

// Must execute in at most 130 clock cycles

function sum()

ptr = get_current_buffer() // ptr is returned in r0

tmp = 0

for (i=0; i < 100; i = i + 1)

tmp = tmp + DM0[ptr + i]

endfor

return SAT(tmp)

endfunction

6



// Must execute in less than 50 + length*3 clock cycles.

function diff()

tmp = 0

length = get_current_length()

ptr1 = get_current_buffer()

ptr2 = get_previous_buffer()

for (i=0; i < length; i = i + 1)

tmp = tmp + ABS(DM0[ptr1 + i] - DM1[ptr2 + i])

endfor

return tmp

endfunction

Your task is to specify how the program flow control (PFC) unit should work.

Information:

• Unconditional branches have one delay slot

• Due to pipeline delays, conditional branches have two delay slots

• Register indirect branches have three delay slots

• The program flow control instructions may use the N, Z, and S flag. These flags
are generated in the same way as in the arithmetic unit described earlier in this
exam.

• There is no requirement to minimize the amount of PFC instructions or the size of
the assembler program. (But you probably want to do that anyway to minimize
the chance of any error.)

• The processor is a single scalar processor able to issue one instruction per clock
cycle.

• If you make any assumptions to solve this exercise, you must document them.

a) Select the PFC instructions that you will require. For each instruction that you select
you must describe exactly what the instruction does. (Hint: use pseudo code!)

b) Using these PFC instructions, implement the program shown above in assembler
code. In addition to the PFC instructions that you selected in a), you may use any
instruction commonly found in a single scalar DSP processor such as Senior without
having to describe how it works. You don’t have to implement the functions that are
not shown above (e.g. logerror(), get packet operation(), etc).

7



Question 5: A number of standard designs (12p)

a) Create a unit that will add 5 guard bits to a 23 bit fixed point number (1p)

c) Create a register file which contains three registers (r0-r2). It should have two read
ports and one write port. The registers should be 8 bit wide. (3p)

d) Create the loop controller part of a PFC unit. The loop controller should be able to
repeat one instruction between 4 and 60 iterations. It does not have to support a loop
with more than one instruction in it. (4p)

Your loop controller has the following inputs:

• init loop: Initialize the iteration counter. Set to one when a repeat instruction is
encountered in the program flow. Otherwise set to 0.

• num iter: The number of iterations in the loop. Undefined when init loop is 0. It
is up to you to decide the width of this signal.

In addition, your loop controller should output the following signal:

• loop done: Set to 0 when executing a loop and set to one on the last instruction
of the iteration. Undefined when not running a loop.

e) Create a simple MAC unit with 5 guard bits capable of executing the following
program:

function dot13(ptr)

ptr0 = DM0[ptr+31]

ptr1 = DM0[ptr+33]

resultptr = DM0[ptr+35]

ACC = 0

for (i = 0; i < 13; i = i + 1)

ACC += DM0[ptr0++] * DM1[ptr1++];

endfor

DM0[resultptr] = SAT(ROUND(ACC))

endfunction

Inputs are in 16 bit Q0.15 format. The output of the filter is in 16 bit Q2.13 format.
You should draw a schematic of your MAC unit and a control table, but you don’t need
to write any assembler code however. You also don’t need to show how your saturation
unit works. (4p)

8


