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Special Purpose Registers (continued from last lecture)

» Sometimes we need special purpose registers (SPR or SR)
BOT/TOP for modulo addressing

AR for address register

SP

/O

Core configuration registers

etc

vV vy vy VvV VvVYYy

» Should these be included in the general purpose register file?
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Special Purpose Registers as normal registers

» Convenient for the programmer. Special purpose registers can
be accessed like any normal register.
» Example: add botO,1 ; Move ringbuffer bottom one
word
» Example 2 (from ARM): pop pc
» Drawbacks:

» Wastes entries in the general purpose register file
» Harder to use specialized register file memories
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Special purpose registers needs special instructions

» Special instructions required to access SR:s
» Example:
» move r0,bot0 ; Move ringbuffer bottom one word
(nop) ; May need nop(s) here
add ro0,1
(nop) ; May need nop(s) here
bot0,r0
(Move is encoded as move from from/to special purpose
register here)
» Advantage:
» Easier to meet timing as special purpose registers can easier be
located anywhere in the core
» Can scale easily to hundreds of special purpose registers if
required. (Common on large and complex processors such as
ARM /x86)
» Drawback:
» Inconvenient for special registers you need to access all the
time

vV vy vy VvYyy
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Conclusions: SPRs

» Only place SPRs as a normal register if you believe it will be
read /written via normal instructions very often
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ALU in general

> ALU: Arithmetic and Logic Unit

Arithmetic, Logic, Shift/rotate, others
No guard bits for iterative computing
One guard bit for single step computing
Get operands from and send result to RF
Handles single precision computing

vV vy vy VvYy
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Separate ALU or ALU in MAC

Register file Register file
\/ multiplier i i multiplier
ALU i DTU i
1 1
A afor
>
H Register file i @ (b)

[Liu2008]
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ALU high level schematic

A [15:0] l J'B [15:0]

Masker, guard, carry-in, and other preprocessing

I\

|
unit unit

\

Saturation and flag processing

Result [15:0]1 lFA/FC, FS, FZ

[Liu2008]
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Pre-processing

» Select operands: from one of the source

» Register file, control path, HW constant
» Typical operand pre processing:

» Guard: one guard

> (does not support iterative computing)

Invert: Conditional/non-conditional invert
Supply constant 0, 1, -1
Mask operand(s)
Select proper carry input

vV vy VvVvyYy
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Post-processing

> Select result from multiple components
» From AU, logic unit, shift unit, and others
» Saturation operation

» Decide to generate carry-out flag or saturation
» Perform saturation on result if required

» Flag operation
» Flag computing and prediction
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General instructions

Operation opa opb Carryin  Carry out

ADD  Addition + + 0 Cout/SAT
SUB  Subtraction  + - 1 Cout/SAT
ABS  Absolute  +/- A[15] SAT
CMP  Compare + - 1 SAT
NEG Negate - 1 SAT
INC  Increment + 1 0 SAT
DEC Decrement + -1 0 SAT
AVG Average + 0 SAT
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Special Instructions

Mnemonic Description

Operation
MAX Select larger value RF <= max(0OpA,OpB)
MIN Select smaller value RF <= min(OpA,OpB)
DTA Difference of two GR <= |OpA| — |OpB|
absolute values
ADT Absolute of the GR <= |OpA—OpB]

difference of two values
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Adder with carry in for RTL synthesis (safe solution)

A[15], A[15:0], “1"
{A[15] [ ] } » Full adder may have no

carry in
B[15],B[15:0],CIN} > One guard bit

/ » We need 2 extra bits in the
adder

/ » LSB of the 18b result will
FA,G [17:0] not be used

» MSB of the 18b result will
Result [16:0] < =FA0 [17:1] be the guard
[Liu2008] » Works on all synthesis tools
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Adder for RTL synthesis (modern version)

v

Cout,Res[15:0] = 1'b0,A[15:0]+1'b0,B[15:0]+Cin;
Cout is 1 bit wide

v

v

Important: Cin is 1 bit wide!

Modern synthesis tools can usually handle this case without
creating two adders

v

» (I've had to resort to the “safe” version shown on the previous
slide in a few cases though. For example when combining an
adder with other logic in an FPGA.)
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Example: Implement an 8 bit ALU

Instructions Function OoP
NOP No change of flags 0
A+B A+ B (without saturation) 1
A-B A — B (without saturation) 2
SAT(A+B) A+ B (with saturation) 3
SAT(A-B) A — B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+ B| (absolute operation, saturation) 6
SAT(ABS(A-B))  |A — BJ (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

> There shold be a negative, zero, and saturation flag!
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Example: Implement an 8 bit ALU

Instructions Function OoP
NOP No change of flags 0
A+B A+ B (without saturation) 1
A-B A — B (without saturation) 2
SAT(A+B) A + B (with saturation) 3
SAT(A-B) A — B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+ BJ (absolute operation, saturation) 6
SAT(ABS(A-B))  |A — B| (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

» There shold be a negative, zero, and saturation flag!

» Discussion topic: How many adders are needed for each
operation?

» Discussion topic: How many guard bits are needed for each
operation?
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Problem: The following function must execute in < 2048

cycles

; First try in assembler

» Problem: The following repeat 500,lend
function must execute in 1d r0,DMO [arO++]
less than 2048 cycles 1d r1,DMO[ari++]

abs r0

for (i=0; i<500;i++){
tmp=abs (*p0++]) ;

abs ri
sub r0,r0,rl

tmp2=abs (xp1++) ; st DMO[ar2++],r0
*p2++ = tmp-tmp2; lend:
} ; 3000 cycles for inner
; loop
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16 bit |A| — |B]

» How many operations do we need for |A| — |B|?
> The easy approach:

» One adder for |A|
» One adder for |B]
» One adder for the final subtraction
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Typical ALU shift operations

LEEo ol srmconsin
o—fis[1e] ... [1]ol>  Losicrgeann
As[ie] o [1]o}0  Losiclensin
|—~|15|14| |1|o|—~| Rotate right without carry flag
olo] - Ao} seositmoscan e

15|14| | 1 | 0 |—J Rotate right with carry flag

(more than one bit not needed)

I‘—|15|14| | 1 | 0 Rotate left with carry flag

(more than one bit not needed)
[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit



Shifter primitive

Shift Input [15:0]

[0] 1] [2] (3] [4] (5] [6] [7] (8] [9][10][11][12][13][14][15
Fill in [0]—|

<«

Fill in
Fill in

Fill in
Fill in
Fill in
Fill in

Fill in
Fill in
Fill in
Fill in
Fill in
Fill in
Fill in
Fill in

[o] 1] [2] (3] [4] [51—7[6 [7] [8] [9][10](11][12][13][14][15
Shift output [15:0]

[Liu2008]

» Note: Barrel shifters based on 4-to-1 multiplexers may be
more efficient
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Hardware multiplexing in shifter

Fromfilling-in table

MSB [15] gy
‘iII in pol
Shiftin [15:0] Filling-in Shift out [15:0]
16 ) | 16
Left shift —~—1 16 bits shift Left shift >
Shiftin[0:15] primitive Shift out [0:15]
[Liu2008]

» Note: Fill in table may be complicated for some shift
operations
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