
05 - Arithmetic Logic Unit

Andreas Ehliar

September 16, 2014

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Purpose Registers (continued from last lecture)

I Sometimes we need special purpose registers (SPR or SR)
I BOT/TOP for modulo addressing
I AR for address register
I SP
I I/O
I Core configuration registers
I etc

I Should these be included in the general purpose register file?

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Purpose Registers as normal registers

I Convenient for the programmer. Special purpose registers can
be accessed like any normal register.

I Example: add bot0,1 ; Move ringbuffer bottom one

word
I Example 2 (from ARM): pop pc

I Drawbacks:
I Wastes entries in the general purpose register file
I Harder to use specialized register file memories

Andreas Ehliar 05 - Arithmetic Logic Unit

Special purpose registers needs special instructions

I Special instructions required to access SR:s
I Example:

I move r0,bot0 ; Move ringbuffer bottom one word
I (nop) ; May need nop(s) here
I add r0,1
I (nop) ; May need nop(s) here
I bot0,r0
I (Move is encoded as move from from/to special purpose

register here)
I Advantage:

I Easier to meet timing as special purpose registers can easier be
located anywhere in the core

I Can scale easily to hundreds of special purpose registers if
required. (Common on large and complex processors such as
ARM/x86)

I Drawback:
I Inconvenient for special registers you need to access all the

time

Andreas Ehliar 05 - Arithmetic Logic Unit

Conclusions: SPRs

I Only place SPRs as a normal register if you believe it will be
read/written via normal instructions very often

Andreas Ehliar 05 - Arithmetic Logic Unit

ALU in general

I ALU: Arithmetic and Logic Unit
I Arithmetic, Logic, Shift/rotate, others
I No guard bits for iterative computing
I One guard bit for single step computing
I Get operands from and send result to RF
I Handles single precision computing

Andreas Ehliar 05 - Arithmetic Logic Unit

Separate ALU or ALU in MAC

multiplier

Register file

Register file

multiplier

Register file

Register file

(a) (b)

ALU

Accumulator ALU and
Accumulator

DTU

[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit

ALU high level schematic

Shift
unit

Logic
unit

Masker, guard, carry-in, and other preprocessing

A [15:0] B [15:0]

Saturation and flag processing

Result [15:0] FA/FC, FS, FZ

[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit

Pre-processing

I Select operands: from one of the source
I Register file, control path, HW constant

I Typical operand pre processing:
I Guard: one guard

I (does not support iterative computing)

I Invert: Conditional/non-conditional invert
I Supply constant 0, 1, -1
I Mask operand(s)
I Select proper carry input

Andreas Ehliar 05 - Arithmetic Logic Unit

Post-processing

I Select result from multiple components
I From AU, logic unit, shift unit, and others

I Saturation operation
I Decide to generate carry-out flag or saturation
I Perform saturation on result if required

I Flag operation
I Flag computing and prediction

Andreas Ehliar 05 - Arithmetic Logic Unit

General instructions

Operation opa opb Carry in Carry out

ADD Addition + + 0 Cout/SAT
SUB Subtraction + - 1 Cout/SAT
ABS Absolute +/- A[15] SAT
CMP Compare + - 1 SAT
NEG Negate - 1 SAT
INC Increment + 1 0 SAT
DEC Decrement + -1 0 SAT
AVG Average + + 0 SAT

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Instructions

Mnemonic Description Operation

MAX Select larger value RF <= max(OpA,OpB)

MIN Select smaller value RF <= min(OpA,OpB)

DTA Difference of two GR <= |OpA| − |OpB|
absolute values

ADT Absolute of the GR <= |OpA−OpB|
difference of two values

Andreas Ehliar 05 - Arithmetic Logic Unit

Adder with carry in for RTL synthesis (safe solution)

+

{A[15], A[15:0], “1”}

Result [16:0] < =FAO [17:1]

{B[15],B[15:0],CIN}

18b full adder

FAO [17:0]

[Liu2008]

I Full adder may have no
carry in

I One guard bit

I We need 2 extra bits in the
adder

I LSB of the 18b result will
not be used

I MSB of the 18b result will
be the guard

I Works on all synthesis tools

Andreas Ehliar 05 - Arithmetic Logic Unit

Adder for RTL synthesis (modern version)

I Cout,Res[15:0] = 1’b0,A[15:0]+1’b0,B[15:0]+Cin;

I Cout is 1 bit wide

I Important: Cin is 1 bit wide!
I Modern synthesis tools can usually handle this case without

creating two adders
I (I’ve had to resort to the “safe” version shown on the previous

slide in a few cases though. For example when combining an
adder with other logic in an FPGA.)

Andreas Ehliar 05 - Arithmetic Logic Unit

Example: Implement an 8 bit ALU

Instructions Function OP

NOP No change of flags 0
A+B A + B (without saturation) 1
A-B A− B (without saturation) 2
SAT(A+B) A + B (with saturation) 3
SAT(A-B) A− B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A + B| (absolute operation, saturation) 6
SAT(ABS(A-B)) |A− B| (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

I There shold be a negative, zero, and saturation flag!

Andreas Ehliar 05 - Arithmetic Logic Unit

Example: Implement an 8 bit ALU

Instructions Function OP

NOP No change of flags 0
A+B A + B (without saturation) 1
A-B A− B (without saturation) 2
SAT(A+B) A + B (with saturation) 3
SAT(A-B) A− B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A + B| (absolute operation, saturation) 6
SAT(ABS(A-B)) |A− B| (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

I There shold be a negative, zero, and saturation flag!

I Discussion topic: How many adders are needed for each
operation?

I Discussion topic: How many guard bits are needed for each
operation?

Andreas Ehliar 05 - Arithmetic Logic Unit

Problem: The following function must execute in < 2048
cycles

I Problem: The following
function must execute in
less than 2048 cycles

for(i=0; i<500;i++){

tmp=abs(*p0++]);

tmp2=abs(*p1++);

*p2++ = tmp-tmp2;

}

; First try in assembler

repeat 500,lend

ld r0,DM0[ar0++]

ld r1,DM0[ar1++]

abs r0

abs r1

sub r0,r0,r1

st DM0[ar2++],r0

lend:

; 3000 cycles for inner

; loop

Andreas Ehliar 05 - Arithmetic Logic Unit

16 bit |A| − |B |

I How many operations do we need for |A| − |B|?
I The easy approach:

I One adder for |A|
I One adder for |B|
I One adder for the final subtraction

Andreas Ehliar 05 - Arithmetic Logic Unit

Typical ALU shift operations

... ...15 14 1 0 Arithmetic right shift

... ...15 14 1 0 Logic right shift0

... ...15 14 1 0 Logic left shift0

Rotate right without carry flag... ...15 14 1 0

Rotate left without carry flag... ...15 14 1 0

... ...15 14 1 0

Rotate left with carry flag
(more than one bit not needed)

... ...15 14 1 0 C

C Rotate right with carry flag
(more than one bit not needed)

[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit

Shifter primitive

Fill in [0]

Fill in [1]
Fill in [2]

Fill in [3]
Fill in [4]
Fill in [5]
Fill in [6]

Fill in [7]
Fill in [8]
Fill in [9]

[15][14][13][12][11][10][9][8][7][6][5][4][3][2][1][0]

[15][14][13][12][11][10][9][8][7][6][5][4][3][2][1][0]

Shift Input [15:0]

Shift output [15:0]

CTRL
LSB

CTRL
[1]

CTRL
[2]

CTRL
MSB

Fill in [10]
Fill in [11]
Fill in [12]
Fill in [13]
Fill in [14]

[Liu2008]

I Note: Barrel shifters based on 4-to-1 multiplexers may be
more efficient

Andreas Ehliar 05 - Arithmetic Logic Unit

Hardware multiplexing in shifter

Filling-in

16 bits shift
primitive

16

Shift in [15:0]

Shift in [0:15]

16

Shift out [15:0]

Shift out [0:15]

MSB [15] “0”

Right shift

Left shift

Right shift

Left shift

Fill in port

From filling-in table

16

[Liu2008]

I Note: Fill in table may be complicated for some shift
operations

Andreas Ehliar 05 - Arithmetic Logic Unit

