05 - Arithmetic Logic Unit

Andreas Ehliar

September 16, 2014

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Purpose Registers (continued from last lecture)

» Sometimes we need special purpose registers (SPR or SR)
BOT/TOP for modulo addressing

AR for address register

SP

/O

Core configuration registers

etc

vV vy vy VvV VvVYYy

» Should these be included in the general purpose register file?

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Purpose Registers as normal registers

» Convenient for the programmer. Special purpose registers can
be accessed like any normal register.
» Example: add botO,1 ; Move ringbuffer bottom one
word
» Example 2 (from ARM): pop pc
» Drawbacks:

» Wastes entries in the general purpose register file
» Harder to use specialized register file memories

Andreas Ehliar 05 - Arithmetic Logic Unit

Special purpose registers needs special instructions

» Special instructions required to access SR:s
» Example:
» move r0,bot0 ; Move ringbuffer bottom one word
(nop) ; May need nop(s) here
add ro0,1
(nop) ; May need nop(s) here
bot0,r0
(Move is encoded as move from from/to special purpose
register here)
» Advantage:
» Easier to meet timing as special purpose registers can easier be
located anywhere in the core
» Can scale easily to hundreds of special purpose registers if
required. (Common on large and complex processors such as
ARM /x86)
» Drawback:
» Inconvenient for special registers you need to access all the
time

vV vy vy VvYyy

Andreas Ehliar 05 - Arithmetic Logic Unit

Conclusions: SPRs

» Only place SPRs as a normal register if you believe it will be
read /written via normal instructions very often

Andreas Ehliar 05 - Arithmetic Logic Unit

ALU in general

> ALU: Arithmetic and Logic Unit

Arithmetic, Logic, Shift/rotate, others
No guard bits for iterative computing
One guard bit for single step computing
Get operands from and send result to RF
Handles single precision computing

vV vy vy VvYy

Andreas Ehliar 05 - Arithmetic Logic Unit

Separate ALU or ALU in MAC

Register file Register file
\/ multiplier i i multiplier
ALU i DTU i
1 1
A afor
>
H Register file i @ (b)

[Liu2008]

Andreas Ehliar - Arithmetic Logic Unit

ALU high level schematic

A [15:0] l J'B [15:0]

Masker, guard, carry-in, and other preprocessing

I\

|
unit unit

\

Saturation and flag processing

Result [15:0]1 lFA/FC, FS, FZ

[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit

Pre-processing

» Select operands: from one of the source

» Register file, control path, HW constant
» Typical operand pre processing:

» Guard: one guard

> (does not support iterative computing)

Invert: Conditional/non-conditional invert
Supply constant 0, 1, -1
Mask operand(s)
Select proper carry input

vV vy VvVvyYy

Andreas Ehliar 05 - Arithmetic Logic Unit

Post-processing

> Select result from multiple components
» From AU, logic unit, shift unit, and others
» Saturation operation

» Decide to generate carry-out flag or saturation
» Perform saturation on result if required

» Flag operation
» Flag computing and prediction

Andreas Ehliar 05 - Arithmetic Logic Unit

General instructions

Operation opa opb Carryin Carry out

ADD Addition + + 0 Cout/SAT
SUB Subtraction + - 1 Cout/SAT
ABS Absolute +/- A[15] SAT
CMP Compare + - 1 SAT
NEG Negate - 1 SAT
INC Increment + 1 0 SAT
DEC Decrement + -1 0 SAT
AVG Average + 0 SAT

Andreas Ehliar 05 - Arithmetic Logic Unit

Special Instructions

Mnemonic Description

Operation
MAX Select larger value RF <= max(0OpA,OpB)
MIN Select smaller value RF <= min(OpA,OpB)
DTA Difference of two GR <= |OpA| — |OpB|
absolute values
ADT Absolute of the GR <= |OpA—OpB]

difference of two values

Andreas Ehliar

05 - Arithmetic Logic Unit

Adder with carry in for RTL synthesis (safe solution)

A[15], A[15:0], “1"
{A[15] [] } » Full adder may have no

carry in
B[15],B[15:0],CIN} > One guard bit

/ » We need 2 extra bits in the
adder

/ » LSB of the 18b result will
FA,G [17:0] not be used

» MSB of the 18b result will
Result [16:0] < =FA0 [17:1] be the guard
[Liu2008] » Works on all synthesis tools

Andreas Ehliar 05 - Arithmetic Logic Unit

Adder for RTL synthesis (modern version)

v

Cout,Res[15:0] = 1'b0,A[15:0]+1'b0,B[15:0]+Cin;
Cout is 1 bit wide

v

v

Important: Cin is 1 bit wide!

Modern synthesis tools can usually handle this case without
creating two adders

v

» (I've had to resort to the “safe” version shown on the previous
slide in a few cases though. For example when combining an
adder with other logic in an FPGA.)

Andreas Ehliar 05 - Arithmetic Logic Unit

Example: Implement an 8 bit ALU

Instructions Function OoP
NOP No change of flags 0
A+B A+ B (without saturation) 1
A-B A — B (without saturation) 2
SAT(A+B) A+ B (with saturation) 3
SAT(A-B) A — B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+ B| (absolute operation, saturation) 6
SAT(ABS(A-B)) |A — BJ (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

> There shold be a negative, zero, and saturation flag!

Andreas Ehliar 05 - Arithmetic Logic Unit

Example: Implement an 8 bit ALU

Instructions Function OoP
NOP No change of flags 0
A+B A+ B (without saturation) 1
A-B A — B (without saturation) 2
SAT(A+B) A + B (with saturation) 3
SAT(A-B) A — B (with saturation) 4
SAT(ABS(A)) |A| (absolute operation, saturation) 5
SAT(ABS(A+B)) |A+ BJ (absolute operation, saturation) 6
SAT(ABS(A-B)) |A — B| (absolute operation, saturation) 7
CLR S Clear S flag (other flags unchanged) 8

» There shold be a negative, zero, and saturation flag!

» Discussion topic: How many adders are needed for each
operation?

» Discussion topic: How many guard bits are needed for each
operation?

Andreas Ehliar 05 - Arithmetic Logic Unit

Problem: The following function must execute in < 2048

cycles

; First try in assembler

» Problem: The following repeat 500,lend
function must execute in 1d r0,DMO [arO++]
less than 2048 cycles 1d r1,DMO[ari++]

abs r0

for (i=0; i<500;i++){
tmp=abs (*p0++]) ;

abs ri
sub r0,r0,rl

tmp2=abs (xp1++) ; st DMO[ar2++],r0
*p2++ = tmp-tmp2; lend:
} ; 3000 cycles for inner
; loop

Andreas Ehliar 05 - Arithmetic Logic Unit

16 bit |A| — |B]

» How many operations do we need for |A| — |B|?
> The easy approach:

» One adder for |A|
» One adder for |B]
» One adder for the final subtraction

Andreas Ehliar 05 - Arithmetic Logic Unit

Typical ALU shift operations

LEEo ol srmconsin
o—fis[1e] ... [1]ol> Losicrgeann
As[ie] o [1]o}0 Losiclensin
|—~|15|14| |1|o|—~| Rotate right without carry flag
olo] - Ao} seositmoscan e

15|14| | 1 | 0 |—J Rotate right with carry flag

(more than one bit not needed)

I‘—|15|14| | 1 | 0 Rotate left with carry flag

(more than one bit not needed)
[Liu2008]

Andreas Ehliar 05 - Arithmetic Logic Unit

Shifter primitive

Shift Input [15:0]

[0] 1] [2] (3] [4] (5] [6] [7] (8] [9][10][11][12][13][14][15
Fill in [0]—|

<«

Fill in
Fill in

Fill in
Fill in
Fill in
Fill in

Fill in
Fill in
Fill in
Fill in
Fill in
Fill in
Fill in
Fill in

[o] 1] [2] (3] [4] [51—7[6 [7] [8] [9][10](11][12][13][14][15
Shift output [15:0]

[Liu2008]

» Note: Barrel shifters based on 4-to-1 multiplexers may be
more efficient

Andreas Ehliar 05 - Arithmetic Logic Unit

Hardware multiplexing in shifter

Fromfilling-in table

MSB [15] gy
‘iII in pol
Shiftin [15:0] Filling-in Shift out [15:0]
16) | 16
Left shift —~—1 16 bits shift Left shift >
Shiftin[0:15] primitive Shift out [0:15]
[Liu2008]

» Note: Fill in table may be complicated for some shift
operations

Andreas Ehliar 05 - Arithmetic Logic Unit

