
Senior
Assembler & Simulator

user manual

September 4, 2008

Contents

1 Senior assembler 5
1.1 Command line syntax . 5
1.2 Assembler source file structure . 6

1.2.1 Reserved words . 7
1.2.2 Mnemonics . 7
1.2.3 Identifiers . 7
1.2.4 Labels . 7
1.2.5 Comments . 8
1.2.6 Numbers . 8
1.2.7 Directives . 8

1.3 Special I/O ports . 11

2 Senior simulator 13
2.1 Command line syntax . 13
2.2 Simulator commands . 14

2.2.1 h/? — print help . 14
2.2.2 p — print registers . 14
2.2.3 l — list program . 15
2.2.4 r — run a number of cycles . 16
2.2.5 d0 — dump data memory 0 . 16
2.2.6 d1 — dump data memory 1 . 17
2.2.7 g — run until CTRL-C pressed . 17
2.2.8 e — toggle event . 17
2.2.9 q — quit . 17

3

Contents Contents

4

1 Senior assembler

The Senior assembler is an assembler for the Senior DSP assembly language. The as-
sembler uses three passes. In the first pass all source code, except undefined identifiers
and labels, is translated to a hex format. In the second pass all remaining identifiers and
labels are translated (if possible) and inserted into the right place in the hex code. In
the third pass, hex file output is generated provided there were no errors in the previous
passes. The hex file output is a text file for use with the Senior simulator only.

The following sections in this chapter will describe the use of the Senior assembler and
the source file structure.
The Senior assembler instruction set is described in a separate document.

1.1 Command line syntax

The assembler command line uses the following syntax:

srasm infile [outfile]

where srasm is the name of the Senior assembler program, infile is the name of the
assembler source file and outfile is the optional name of the output hex file. If no name
is given for the output hex file one will be generated using the name of the infile as
the base with the extension .hex added. For instance if the infile is named test1.asm

the outfile will be named test1.hex. The output hex file will always be written in the
same directory as the input source file, unless a certain path is specified in the outfile

parameter. For instance, running the command:

> srasm test1.asm out/test01

Senior assembler

Assembled successfully into ’out/test01’

will generate the file test01 (without .hex extension) in the out directory (provided it
exists). Running the command:

> srasm src/test1.asm

Senior assembler

Assembled successfully into ’src/test1.hex’

will generate the file test1.hex in the same directory as the infile test1.asm.

5

1.2. ASSEMBLER SOURCE FILE STRUCTURE CHAPTER 1. SENIOR ASSEMBLER

1.2 Assembler source file structure

The assembler source file typically consists of several sections. Usually there is first a
section with defines and aliases declaring names of constants, registers and such for later
use in the code. There are four memory spaces (ram0, rom0, ram1 and code) defining
where definitions and code eventually end up. Here is an example of a source file:

; === main.asm ===

; This is the main program

.alias sp ar3

#define port1 0x0011

.ram1

.skip 128

stack

.align 1024

.code

#include "output.asm"

main

set sp,stack ;initialize stack pointer

call stream_init ;initialize stream

main_loop

call read_header

call layer2_decode

jump main_loop

.rom0

table_bitrate

.dw 0, -1,-1,-1,1, -1,2, 3, 4, 5, 6, 7, 8, 9, 10

table_C

.scale 2.0

.dfu 1.33333333333, 1.60000000000, 1.14285714286, 1.77777777777

table_D

.scale 1.0

.df 0.06250000000, 0.03125000000, 0.01562500000, 0.00781250000

Concerning indentation, label definitions MUST reside at the beginning of a line, hash
directives (#), dot directives (.) and comments MAY start at the beginning of a line

6

CHAPTER 1. SENIOR ASSEMBLER 1.2. ASSEMBLER SOURCE FILE STRUCTURE

and everything else MUST NOT start at the beginning of a line. The various parts of
the source code structure is explained in the following sections.

1.2.1 Reserved words

Reserved words are words that can not be used for anything else but their designated
purpose. These are typically all the mnemonics (instructions and such), names of regis-
ters, accumulators, scale factors, etc, in short everything that is declared in the assembler
by default. For instance the word call (for the instruction call) is reserved and can
not be used as an identifier or a label, but for instance the words call or call4 are not
reserved and can be used freely.

1.2.2 Mnemonics

Mnemonics are typically the instruction words and its various options and operators.
An assembler source line, with an instruction, always start with the instruction itself
followed by its arguments, if any. The exact syntax for all instructions and its options,
the instruction set, is described in a separate document.

All mnemonics must be written in the source code using lowercase lettering.

1.2.3 Identifiers

In the assembler source file context, identifiers are names that refer to something typi-
cally defined by the programmer. A label, a constant or the definition of a register. The
assembler lines

.alias sp ar3

#define port1 0x0011

would define the identifiers sp and port1 for reference to the address register ar3 and
the constant 0x0011 respectively, for later use in the code.

Identifiers must use the syntax [a-zA-Z][a-zA-Z0-9]*. This means they must start
with a lowercase or uppercase letter from a to z or the underscore sign (), then followed
by a mix of any number of (0 or more) lowercase or uppercase letters a to z, digits 0 to
9 or underscore signs.

For instance, these are acceptable identifiers: start1, data , AC9 xy, and these are not
acceptable: 7level, -track, acer~.

1.2.4 Labels

Labels are identifiers and must follow the rules as such (see previous section). Label
definitions MUST reside at the beginning of a line and MUST NOT be followed by
anything else for the remainder of the line, except comments.

7

1.2. ASSEMBLER SOURCE FILE STRUCTURE CHAPTER 1. SENIOR ASSEMBLER

1.2.5 Comments

Comments may reside anywhere in the code. A comment is initiated by the semicolon
character (;) and is active until the end of the line.

1.2.6 Numbers

Numbers can be either integer numbers or floating point numbers. Integer numbers can
be entered using the decimal, hexadecimal or binary base. Decimal number are entered
just the way they are, with an optional leading minus sign (-) if it is a negative number.
Hexadecimal numbers are initiated using either 0x or $ and binary numbers start with
%. For instance, these are decimal numbers: -17, 32700, and these are hexadecimal
numbers: 0x3A7F, $9001, and this is a binary number: %10010110.

Floating point numbers can be entered in a decimal form only using the syntax [0-9]+[.][0-9]+,
that is starting with one or several digits followed by a decimal point followed by one or
several digits. Negative floating point numbers may be entered with a leading minus sign
(-). For instance, these are floating point numbers: 3.14159265359, -0.33333333333.

1.2.7 Directives

The assembler makes use of cpp (C pre processor) before processing the assembly source
code. Hence cpp must be available in the search path when running the assembler. Cpp
makes it possible to use some of its pre processor directives in the assembly code.

#include

The #include directive is a cpp directive. It includes another source file exactly as it is
in the place of the #include directive. This way it is possible to divide a project into
several assembly source files and include them wherever needed. The #include directive
takes a file name within quotation marks as its only argument, like this:

#include "init.asm"

#define

The #define directive defines identifiers for constants. Look at the section Identifiers
above for the definition of identifiers. A constant identifier may be defined like this:

#define port1 0x0011

.code

The .code directive is one of four memory space directives. It sets an internal memory
space pointer to direct the following code generation to the program memory space.
This program memory space is used for actual program content, that is instructions.
The directive is valid until another memory space directive occurs.

8

CHAPTER 1. SENIOR ASSEMBLER 1.2. ASSEMBLER SOURCE FILE STRUCTURE

.ram0

The .ram0 directive is one of four memory space directives. It sets an internal memory
space pointer to direct the following code generation to the first part of data memory 0.
This directive is typically used together with the .skip directive (see below) to reserve
larger sets of RAM memory. For instance the following code:

.ram0

array4

.skip 128

would reserve 128 data words in data memory 0 for access with the label array4. The
directive is valid until another memory space directive occurs.

.rom0

The .rom0 directive is one of four memory space directives. It sets an internal memory
space pointer to direct the following code generation to the second part of data memory
0. This directive is typically used for ROM table content. It is stored in the hex output
file together with the rest of the generated program content and loaded into the simulator
at start. Used together with the .dw, .df or .dfu directives it is possible to generate
ROM table data, for instance like this:

.rom0

.dw 0, -1,-1,-1,1, -1,2, 3, 4, 5, 6, 7, 8, 9, 10

.dfu 1.33333333333, 1.60000000000, 1.14285714286, 1.77777777777

.df 0.06250000000, -0.03125000000, 0.01562500000, -0.00781250000

The directive is valid until another memory space directive occurs.

.ram1

The .ram1 directive is one of four memory space directives. It sets an internal memory
space pointer to direct the following code generation to data memory 1. This directive
is typically used together with the .skip directive (see below) to reserve larger sets of
RAM memory. For instance the following code:

.ram1

table7

.skip 12000

would reserve 12000 data words in data memory 1 for access with the label table7. The
directive is valid until another memory space directive occurs.

9

1.2. ASSEMBLER SOURCE FILE STRUCTURE CHAPTER 1. SENIOR ASSEMBLER

.skip

The .skip directive increments the internal memory space pointer for the current mem-
ory space by the number of its one and only argument. Skipping, thus reserving, that
amount of memory. This directive only makes sense in the ram0 or the ram1 memory
space.

.align

The .align directive takes one positive number as its argument. That argument will
adjust the current memory space pointer to the next multiple of the argument number.
For instance, if the current memory space pointer is at 1000 and the directive .align

256 is set, the memory space pointer would be adjusted to 1024, since 1024 is divisible
by 256. If using .align 4 nothing will happen, since 1000 is already divisible by 4.

.alias

The .alias directive defines identifiers for already existing definitions of registers, accu-
mulators, other identifiers and such. It takes two comma separated identifier arguments.
The first one must not be previously defined while the second one must be previously
defined. For instance, the following:

.alias sp ar3

would define the identifier sp to be the very same as the address register ar3.

.scale

The .scale directive affects the way floating point numbers are stored. The directive
takes one positive floating point number as its only argument. The directive will set a
range for floating point numbers to be stored. For instance, the following:

.scale 2.0

would set the range [-2.0,2.0[for signed floating point numbers and the range [0,2.0[
for unsigned floating point numbers. The directive is valid until another .scale directive
is set. Any floating point number outside the range will be saturated to within the range,
with a given warning.
The default .scale directive value is 1.0.

.dw

The .dw directive will store a 16 bit integer number at the memory space pointer in the
current memory space. The directive takes a comma separated list of signed or unsigned
constants as its argument. It is only useful in the rom0 memory space. It may be used
for instance like this:

.rom0

.dw 7, -3, data3, $3F12 ; data3 is a previously defined constant

10

CHAPTER 1. SENIOR ASSEMBLER 1.3. SPECIAL I/O PORTS

.df

The .df directive will store a signed floating point number at the memory space pointer
in the current memory space. The directive takes a comma separated list of signed
floating point constants as its argument. It is only useful in the rom0 memory space.
Each value will be divided by the scale factor (set by the .scale directive) and then
converted to a binary representation with a sign bit and 15 fractional bits. This 16 bit
value is finally stored in memory. If the value does not fit this representation it will be
saturated. It may be used for instance like this:

.rom0

.scale 2.0

.df 0.0, 0.5, -1.0, 1.0, -2.0, 2.0

which will be equivalent with the following code:

.rom0

.dw $0000, $2000, $C000, $4000, $8000, $7FFF

Note that the sixth value (2.0) has been saturated.

.dfu

The .dfu directive is similar to the .df directive. The difference is that .dfu uses an
unsigned representation with 16 fractional bits. It may be used for instance like this:

.rom0

.scale 2.0

.dfu 0.0, 0.5, 1.0, 1.5, 2.0

which will be equivalent with the following code:

.rom0

.dw $0000, $4000, $8000, $C000, $FFFF

Note that the fifth value (2.0) has been saturated.

1.3 Special I/O ports

There are four I/O ports that have special meaning for the assembler and simulator.
They are the following:

Address I/O Description$0010 in Read data from the external file "IOS0010"$0011 out Write data to the external file "IOS0011"$0012 out Stop simulation and exit simulator$0013 out Stop simulation, same as pressing CTRL-c

11

1.3. SPECIAL I/O PORTS CHAPTER 1. SENIOR ASSEMBLER

These I/O ports are either in or out only, to be used with the instructions in or out

respectively.

Using the instruction:

in r14,$0010

will read the next data from the file ”IOS0010” to general register r14. The file
”IOS0010” must be a plain text file with 16 bit hexadecimal values, one value per line.
It may look something like this:

0087

7a71

bb27

005e

308d

006d

0022

Using the instruction:

out $0011,r21

will write data from the general register r21 to the file ”IOS0011”. The format of the
file ”IOS0011” is the same as for the file ”IOS0010” above.

Using the instruction:

out $0012,r0

will stop the simulation and exit the simulator. This is useful when using external scripts
and makefiles for running several simulations sequentially without human intervention.
The contents of the source register (r0) will be ignored.

Using the instruction:

out $0013,r0

will stop the simulation and return to the simulator prompt, thus remaining in the
simulator environment. This is useful when there is a need to inspect processor status
(registers, flags, stack, memories, etc) at a certain point in the program after running at
full speed. Think of it as a break point. The contents of the source register (r0) will be
ignored.

12

2 Senior simulator

The Senior simulator is a simulator for the Senior DSP. Although the Senior DSP has
a pipelined architecture the simulator operates from a programmers point of view, so
that each instruction is seemingly executed immediately, though all cycle events are kept
track of and executed accordingly. In other words, the Senior simulator is not a fully
true pipeline cycle simulator.

2.1 Command line syntax

The simulator command line uses the following syntax:

srsim [-r] [-p pm size] [-0 dm0 size] [-1 dm1 size] program

where srsim is the name of the Senior simulator program and program is the filename
of the program to simulate, the file produced as output from the Senior assembler. All
other arguments are optional and work as follows:

Option Description Maximum value Default value

-r run program directly when loaded --- ---

-p set size for program memory 65536 65536

-0 set size for data memory 0 65536 65536

-1 set size for data memory 1 65536 65536

For instance, running the command:

> srsim -p 4096 test1.hex

Senior simulator

Allocated 4096 words for program memory

Allocated 65536 words for data memory 0

Allocated 65536 words for data memory 1

Read 924 words to program memory

sim>

will set program memory size to 4096, load the program test1.hex to program memory
and wait for command input at the sim> prompt. OBSERVE, all sizes for program
memory and data memories must be large enough to hold its designated content or
there will be a memory access violation.
When using the option -r, simulation may be aborted by pressing CTRL-c which will
also exit the simulator.

13

2.2. SIMULATOR COMMANDS CHAPTER 2. SENIOR SIMULATOR

2.2 Simulator commands

The simulator has a few ”in house” commands (explained below) for use when simulating.
It is always possible to repeat the last command by pressing CTRL-d .

2.2.1 h/? — print help

Print a list of available commands. It should look something like this:

sim> h

Senior simulator

--

p print registers

r <n> run <n> cycles

d0 [n] dump dm0 from address [n]

d1 [n] dump dm1 from address [n]

g go, until CTRL-C

e toggle event

l list program around pc

h/? display this help

q quit

--

sim>

2.2.2 p — print registers

Print the contents of all 32 general registers, all 32 special registers, all 4 accumulators,
the contents of the hardware stack, the settings of all flags, the value of the program
counter, the hardware stack pointer and the cycle counter. It should look something like
this:

sim> p

r:

0000 0040 0000 0000 0000w0000 0000 0000

0000 0000 0000 0000 0000w0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

sr:

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 3F12r0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

acr:

0000000000 0000000000 0000000000 0000000000

hwstack:

14

CHAPTER 2. SENIOR SIMULATOR 2.2. SIMULATOR COMMANDS

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

flags:

MV:0 MS:0 MN:0 MZ:0 AV:0 AC:1 AN:0 AZ:0

pc: hwsp: cc:

0003 0 3

test1.asm:14: set r7, #$3F7A

sim>

Lastly, the next source code line to be executed may be printed. Printed is the source
code file name, line number and then the actual source code line. The simulator is not
aware of the source code file location, so for this to work the source code file has to be
in the same directory as from where simulator is started.
After each and one of the general and special registers there may be one of the characters
r or w printed in either lowercase or uppercase. A lowercase r or w signifies this register
is scheduled for a reading or writing, respectively, at a later cycle. An uppercase R or W
signifies this register is to be read or written, respectively, at the current cycle.

2.2.3 l — list program

List the source code program around the current program counter address. Some ad-
dresses before and some after the current program counter will be printed. The current
source code line to be executed is notified with an arrow, ->. It should look something
like this:

sim> l

set r5,2

lsr r1,r8,12

lsr r2,r8,10

lsr r3,r8,9

lsr r4,r8,6

lsr r6,r8,4

set r8,1

-> and r1,15

and r2,3

and r3,1

and r4,3

and r6,3

st0 (ar2++),r1 ; bitrate

cmp 3,r4 ; mode_single_channel

move.eq r5,r8 ; channels (1 or 2)

sim>

The simulator is not aware of the source code file location, so for this to work the source
code file has to be in the same directory as from where the simulator is started.

15

2.2. SIMULATOR COMMANDS CHAPTER 2. SENIOR SIMULATOR

2.2.4 r — run a number of cycles

Run a specified number of cycles. This command takes one argument, an integer number,
specifying how many cycles to run. After running the specified number of cycles the p

command, print registers, is executed. It should look something like this:

sim> r 4

Simulating 4 cycle(s):[100..104[

r:

0040 000aW0000w0000w0001w0002 0a04 0000

0001 0001 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

sr:

0000 0000 0004 007e 0000 0000 0000 0000

0000 0000 0000w0001 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

acr:

0000000000 0000000000 0000000000 0000000000

hwstack:

0008 00b5 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

flags:

MV:0 MS:0 MN:0 MZ:0 AV:0 AC:0 AN:0 AZ:0

pc: hwsp: cc:

00c2 1 104

test1.asm:79: and r6,3

sim>

2.2.5 d0 — dump data memory 0

Dump (print) 128 address contents, starting from a specified address, from data memory
0. This command takes one optional argument, an integer number, specifying from what
address to start dumping. If no argument is given, dumping will continue from after the
last address previously dumped. It should look something like this:

sim> d0 33368

8258: 9592 8276 8276 9592 b8e3 e707 18f9 471d

8260: 6a6e 7d8a 7d8a 6a6e 471d 18f9 e707 b8e3

8268: 9592 8276 83d6 a129 d4e1 12c8 4c40 73b6

8270: 7fd9 6dca 41ce 0648 c946 9930 8163 877b

8278: aa0a e0e6 1f1a 55f6 7885 7e9d 66d0 36ba

8280: f9b8 be32 9236 8027 8c4a b3c0 ed38 2b1f

8288: 5ed7 7c2a 8583 aecc f374 3c57 70e3 7f62

16

CHAPTER 2. SENIOR SIMULATOR 2.2. SIMULATOR COMMANDS

8290: 62f2 2528 dad8 9d0e 809e 8f1d c3a9 0c8c

8298: 5134 7a7d 7a7d 5134 0c8c c3a9 8f1d 809e

82a0: 9d0e dad8 2528 62f2 7f62 70e3 3c57 f374

82a8: aecc 8583 877b be32 12c8 5ed7 7fd9 66d0

82b0: 1f1a c946 8c4a 83d6 b3c0 0648 55f6 7e9d

82b8: 6dca 2b1f d4e1 9236 8163 aa0a f9b8 4c40

82c0: 7c2a 73b6 36ba e0e6 9930 8027 a129 ed38

82c8: 41ce 7885 89be cf04 30fc 7642 7642 30fc

82d0: cf04 89be 89be cf04 30fc 7642 7642 30fc

sim>

2.2.6 d1 — dump data memory 1

Dump (print) 128 address contents, starting from a specified address, from data memory
1. This command works in the same way as the command d0, but from data memory 1.
See above.

2.2.7 g — run until CTRL-C pressed

Run continously until CTRL-c is pressed. Having run the command and then pressed
CTRL-c it should look something like this:

sim> g

Running...(break with CTRL-C)...

Execution aborted at PC:626, CYCLE:3892040

sim>

2.2.8 e — toggle event

Toggle event messaging on or off. Some events during simulation like saturation from
calculations or delay slot jump activation, may be notified by event messaging. It can
be useful when stepping through a program but may be annoying when running at full
speed. Toggling event messaging should look something like this:

sim> e

Event is on

sim> e

Event is off

sim>

Event Messaging is off by default.

2.2.9 q — quit

Quit and exit the simulator.

17

