
Chapter 3

Lab 3 - Program Flow

3.1 Introduction

In this lab you will learn more about what special considerations are needed when designing logic for
program flow instructions. You are allotted two lab occasions (eight hours) to finish this lab.

3.2 General description

After finishing lab 2 all building blocks of the processor are completed. It is now time to put all the parts
together. In a pipelined processor this is not as easy as it first might seem. The parts must not only fit
together in the topological aspect of connecting the right wire to the right input. The parts must also
fit together in time. In Senior this task is complicated by the fact that there are three different pipeline
depths in the processor, the pipeline depth depends on the instruction being executed. A pipeline will
also make all kinds of program flow instructions troublesome as will be shown later in this exercise.

During all execution, instructions are fetched from the program memory (PM) using the program
counter (PC) as the address. An instruction decides the values of all the control signals in the processor.
An instruction usually has fewer bits than there are control signals in a processor, thus the instruction must
be converted into its control signals before it is of any use. And that is the task of the instruction decoder.
The instruction decoder, situated in pipeline stage P2 in the processor according to Figure 3.1, has two
sub modules; id decode logic and id pipeline logic. Verify this by open instruction decoder.v.
Your first task is to briefly describe what the two modules do. It is important that you understand how
the pipeline in Figure 3.1 works in order to complete this lab.

In lab 2 you have been running the entire processor, but not necessarily had to look into it in any
detail. In this lab it is advised that you familiarize yourself a bit more with the processor and the system
supporting it, see section 0.8.

3.3 Task 1: Instruction Decoding Hardware

Describe what the module id pipeline logic and id decode logic do. Hint: Their functionality is not
far from their names..

Jumps, calls and returns are essentially the same operation and will be referred to as just jumps if the
distinction is not important.

18

Figure 3.1: The normal pipeline, including PFC details.

19

3.3.1 Task 1: Summary

Answer the following:

1. Describe what the modules id pipeline logic and id decode logic do.

3.4 Understanding Delay Slots

Due to the pipeline the actual PC update in a jump can not and will not happen immediately. The previous
instruction must have reached and set the ALU flags in pipeline stage P4 to make conditional jumps work
correctly. MAC flags will be set one cycle later and if using them to jump on the programmer must ensure
they are set correctly. Waiting for the correct flags to be set means that a number of instructions after
the jump instructions will be fetched and executed. The question is then what to do with them. There
are two extreme options. The first extreme option is to let the processor execute them as they are fetched
and it is the programmers responsibility to make sure that the instructions after the jump instruction are
useful. Instructions after the jump are said to reside in the jumps delay slots. The safe way to handle
delay slots is to insert only NOP:s in all slots. The other extreme option is to let the processor deal with this
and always insert NOP instructions in place of the fetched instructions. In Senior you can chose what you
want to do with the ds directive. Thus when using ds1 with a jump instruction the instruction following
the jump will execute but the other two instructions will be forced to NOP:s by the processor. This is
the reason for the pfc inst nop o signals from the PC FSM. If it is set high, the decoder will see a NOP

instruction instead of the instruction fetched from PM.

P0 P1 P2 P3 P4
PC+ PC(instr)
1 0(A) — — —
2 1(B) A — —
3 2(JMP 0) B A —
4 3(C) JMP 0 B A
5 4(D) C JMP 0 B
0 5(E) D C JMP 0
1 0(A) E D C
2 1(B) A E D
3 2(JMP 0) B A E
4 3(C) JMP 0 B A
5 4(D) C JMP 0 B

and so on

Table 3.1: Pipeline table for jump instruction.

3.5 Pipeline Table

To fully understand what is going on in the pipeline of a processor it is useful do draw a pipeline table as
shown in table 3.1. This example shows how a jump instruction is executed. In the P0 column the next
PC value is listed, in P1 the actual PC value together with the instruction at that address in the program
memory is listed, in P2 – P4 the instruction is simply propagated through the pipeline. Here it is clearly
seen how, in P3 and P4, three extra instructions are executed (C,D, and E), that is if nothing is done

20

about it, i.e. inserting NOPs as described earlier. If you find it troublesome completing the PC FSM, it is
recommended that you draw a pipeline table for all program flow instructions, i.e. JUMP, CALL, RET.

3.6 Task 2: Pipeline Table of a Small Program

In listing 3.1 a small program is defined. Your task is to fill out a pipeline table as described in section 3.5.
Detailing how the instructions progress in the pipeline. You can refer to the instructions as the line
number they are defined on in listing 3.1. Set PC to zero for the first instruction (on line 2). When doing
this exercise look at the pipeline of the processor, shown in Figure 3.1, and think about what instructions
are in each pipeline stage.

Also answer the following questions:

1. Which instructions get executed and which instructions get flushed?

2. What are the differences between a return and any other jump instruction? Hint: The value of the
return PC must be fetched from the stack.

Listing 3.1: A small program(lab3 ex.asm)

1 . code
2 s e t r1 , 0 x0001
3 s e t r2 , 0 x0001
4 sub r0 , r1 , r2
5 jump . eq s t a r t
6 add r13 , r1 , r2
7 s t a r t
8 add r1 , r1 , r2
9 jump ds2 l 1

10 add r1 , r1 , r2
11 add r2 , r1 , r2
12 add r3 , r1 , r2
13 l 1
14 c a l l ds3 f1
15 add r4 , r1 , r2
16 add r5 , r1 , r2
17 add r6 , r1 , r2
18 move r7 , r2
19

20 out 0x12 , r0
21

22 f 1
23 move r8 , r1
24 r e t ds1
25 add r9 , r1 , r2
26 add r10 , r1 , r2
27 add r11 , r1 , r2
28 add r12 , r1 , r2

21

3.6.1 Task 2: Summary

Create a pipeline table of the program in listing 3.1 and answer the following questions:

1. Which instructions get executed and which instructions get flushed?

2. What are the differences between a return and any other jump instruction? Hint: The value of the
return PC must be fetched from the stack.

3.7 Task 3: Program Counting

Before any instruction decoding or pipelining can take place the instruction to use must be fetched. This
is done by taking the value of the program counter as an address into the program memory. In a processor
with no flow control, the program counter logic is easy. Just increment it by one instruction each clock
cycle. However in a useful processor some form of flow control must be implemented. Before solving this
task, the program counter will only increment its value by one each clock cycle and executing any form
of program flow instructions will result in undefined behavior.

3.7.1 The PC FSM

Your task is to complete the finite state machine responsible for selecting what the next value of the
program counter shall be. Large parts of the FSM has been implemented in pc fsm.v(hd). Your task is
to complete the FSM. You need to make sure that the FSM jumps to the correct state and also in each
state sets the correct output signals.

As shown in Figure 3.1, the PC FSM takes inputs from the instruction decoder(the ctrl signal) and
the condition checker(the jump decision signal). It outputs two signals, pc add opa sel and pc sel to
the program counter (next PC block). The program counter will update the PC value according to these
two control signals from PC FSM.

In order to complete this task youmust understand the architecture of the program counter (program counter.v),
shown in Figure 3.2. Worth noting about the program counter architecture is that two of the output signals
from the PC FSM is used to select the next PC.

Control Signal Naming Convention

The control signals names in the modules is named as follows: ctrl ξ∆γ. Where ξ is i or cµ, where µ

is an integer representing how much the control signals has been delayed locally in the module. ∆ is the
control signal name delimiter, ` in Verilog or in VHDL. And γ is the control signal name. For example
from table 3.2, ctrl c2 PFC RET (VHDL), is the signal ctrl i PFC RET delayed two clock ticks.

Further you have to understand how the PC FSM works. The PC FSM is of Mealy type, which means
that both the next state and the output is a function of the current state and the input signals. The
general architecture of a Mealy machine is shown in Figure 3.3.

The state transition graph for the PC FSM is shown in Figure 3.4. Worth noting are the five different
paths going from S0. There are four different paths for jumps depending on how many delay slots are
used. And finally there is one path for normal PC increment.

There are two subtasks in getting the PC FSM to work. One task is to get all the transitions right
and the other task is to make sure that each state outputs the correct values. Its not necessary to solve
one task before the other, it might be easier to solve them together, one instruction at a time. To solve
both these subtasks you must understand the meaning of the in and output signals to/from the PC FSM,
the signals are listed in table 3.2 and table 3.3.

22

a)

b)

signal width description
ise i 16 interrupt address (not used)
lc pc loopb i 16 start address of repeat loop (not used)
ta i 16 target address of a jump or call
stack bus i 16 top of hardware stack, used for returns
pfc pcadd opa sel i 1 inc/dec PC
pfc pc sel i 3 next PC mux selection

Figure 3.2: Next PC selection. a) Block diagram b) Signal descriptions

Figure 3.3: General architecture of a Mealy type FSM.

23

It is important to note that all modules involved in program counting get their control signals un-
pipelined from the instruction decoder. This in effect means that the loop controller and PC FSM gets
their control signals in pipeline stage P2.

S 0

normal

S 4

jump ds=0

S 5

jump ds=1

S 3
jump ds=2

S 1

jump ds=3

S 8

S 6

S 7

S 1 0

S 9

r e t = 0

S 1 3

r e t = 1r e t = 0

r e t = 1

Figure 3.4: The PC FSM

PC FSM Transitions

As can be noted in your skeleton file S0 will only jump to itself. This is obviously not correct and you
must select what state to jump to from S0.

Hint: Look for the “What is the next state?” comment.

PC FSM Output

All the output signals from the PC FSM are listed in table 3.3 and it is your task to make sure they are
set correctly in each state.

3.7.2 Testing the PC FSM

There are a number of assembler files prepared for you to test the RTL code you have written, they are
listed in table 3.4. It is suggested that you run the test programs in the order they are listed in table 3.4

24

signal width description
jump decision i 1 high if jump shall be taken.
lc pfc loope i 16 end address of repeat loop (not used)
lc pfc loop flag i 1 high if loopn register is 0 (not used)
pc addr bus i 16 current PC value
ctrl i 6 control signals from the instruction decoder
ctrl i PFC REPEAT X 1 high if repeat of only x instructions (not used)
ctrl i PFC JUMP 1 high if executing a jump instruction
ctrl i PFC DELAY SLOT 2 number of delay slots after a jump
ctrl i PFC RET 1 high if executing a return instruction

Table 3.2: PC FSM input signals. The signal ctrl i is divided into 4 fields.

signal width description
pfc pc add opa sel o 1 what to add to PC (see Figure 3.2)
pfc pc sel o 3 final PC selection (see Figure 3.2)
pfc inst nop o 1 if high, inserts a NOP instruction
pfc lc loopn sel o 1 if high, decrement the loop counter register (not used)

Table 3.3: PC FSM output signals

since the later programs might assume that some program flow instructions are working. To run the test
programs, just follow the procedure outlined in section 0.6.

File Description
pfc jump.asm Tests jump.
pfc cond jump.asm Tests conditional jump.
pfc call.asm Tests call and ret.

Table 3.4: PC FSM test programs

3.7.3 Debugging hints

If you encounter any bugs in your PC FSM it is much easier to debug them if you create your own test
programs. (For example, by copying one of the test benches provided by us and removing everything but
one test.)

Another fairly common issue in this lab is that you may create a combinational loop which is fairly
hard to find. If your simulation time suddenly stops advancing you have probably managed to create a
combinational loop. Hint: Look at Figure 3.1 and determine whether you are setting the control signal
for the NOP mux correctly.

We have also noticed that missing signals in the sensitivity list in a process is a relatively common
issue which can cause all sort of weird bugs.

3.7.4 Task 3: Summary

Complete the HDL code for the PC FSM as outlined above. Then test it using the test programs listed
in table 3.4.

25

3.8 What to Answer

When you have completed all lab tasks, you should demonstrate your design, show the code you have
written and be prepared to answer questions on how your design works.

26

