Simulering i Modelsim

Följande dokument beskriver steg för steg hur en VHDL-modell simuleras i Modelsim. Sist i dokumentet finns några övningsexempel.

1. Kopiera katalogen "TSEA22" från "U:\da " till "H:\"

2. Starta Modelsim

 $\mathsf{Start} \to \mathsf{All} \; \mathsf{Programs} \to \mathsf{ModelsimSE..} \to \mathsf{Modelsim}$

3. Skapa ett projekt

 $File \rightarrow New \rightarrow Project$

- Project name: "XOR_sim"
- Project Location: "H:/TSEA22/VHDL_lektion/XOR"
- ≻ ОК
- Add Existing File: "H:/TSEA22/VHDL_lektion /XOR/XOR_gate.vhd"
- ≻ ок
- Close

I **Library** finns en lista på alla tillgänliga bibliotek och dess tillhörande objekt. Konstruktion finns under "work"

I Project listas alla VHDL-filer som finns i det nuvarande projektet

4. Kompilering

 $Compile \rightarrow Compile \ all$

5. Simulering

	GUI	Transcript
A A	Library: work/xor_gate Höger klick → <i>Simulate</i>	>vsim xor_gate
A A	Objects: markera all signaler Höger klick → <i>Add Wave</i>	>add wave sim:/xor_gate/*
	Wave: höger klicka på "a", välj "Clock" : offset="25ns", Duty="50", Period="100ns" . OK	> force -freeze sim:/xor_gate/a 1 25, 0 {75 ns} -r 100
	Wave: höger klicka på "b", välj "Force": Value="0", OK "Force" Value"1", "Delay for"="200ns", OK	> force -freeze sim:/xor_gate/b 0 0, 1 200
	Ändra "Run Length" till 400 ns	>run 400ns
	Klicka på "run" 트	

Figur 1: Resultatet av simuleringen

6. Visa resultat

Zoom-funktioner i vågfönstret

Mäta tid

- Flytta gula boxen (default 0 ns)
- ► Lägga till markör: Add → Cursor

Dividers

- ➢ Höger klicka på signalen "a" → Add → New Divider Divider Name="Ingångar"
- ➢ Höger klicka på signalen "y" → Add →New Divider Divider Name="Utgångar"

7. Addera en signal i VHDL filen

GUI	Transcript
Modelsims huvudfönster, Project	
Höger klicka på XOR_gate.vhd → <i>Edit</i>	
Lägg till signalen "z = not y"	
Project → Compile→Compile Selected	>vcom XOR_gate.vhd
Klicka på "Restart" 📑	>restart –force
Stimuli till signal "a" och "b", se punk 4	<pre>> force -freeze sim:/xor_gate/a 1 25, 0 {75 ns} -r 100</pre>
	>force -freeze sim:/XOR_get/b 0 0 ns, 1 200ns
Klicka på "run" 国	>run 400ns

Byta färg för logiska nivåer

ModelSim fönstret: *Tools* \rightarrow *Edit Preferences.*. \rightarrow *Wave Windows* \rightarrow *LOGIC_1* \rightarrow *Palette* \rightarrow *Gold*

Byta färg på en signal

Wave fönstret: Höger klick på signal \rightarrow Properties \rightarrow Wave Color

Macro ModelSim fönstret: *Load* \rightarrow *MacroFile* \rightarrow "*sim.do*"

Spara vågfönster från en simulering Wave fönstret: *File→Export→Image..*

Ändra radix/base till Unsigned Wave fönstret: Höger klick på signal \rightarrow Radix \rightarrow Unsigned

Uppgift 1. Konstruera med hjälp av VHDL en BCD-räknare som har samma funktion som 74LS160 och simulera konstruktionen i Modelsim.

Använd funktioner som finns i VHDL, tex "a <= a + 1" (minimering mha Karnaughdiagram behöver INTE göras).

Insignaler: CLR, LOAD, A, B, C, D, CLK, EN_P, EN_T

Utsignaler: Q3, Q2, Q1, Q0, RCO

Uppgift 2. Simulera VHDL-filen till kodlåset från lab 2 (uppgift 10).