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Abstract— State-of-the-art methods have recently achieved
impressive performance for recognising the objects present in
large databases of pre-collected images. There has been much
less focus on building embodied systems that recognise objects
present in the real world. This paper describes an intelligent
system which attempts to perform robust object recognition
in a realistic scenario, where a mobile robot moving through
an environment must use the images collected from its camera
directly to recognise objects. To perform successful recognition
in this scenario, we have chosen a combination of techniques
including a peripheral-foveal vision system, an attention system
combining bottom-up visual saliency with structure from stereo,
and a localisation and mapping technique. The result is a
highly capable object recognition system which can be easily
trained to locate the objects of interest in an environment, and
subsequently build a spatial-semantic map of the region. This
capability has been demonstrated during the Semantic Robot
Vision Challenge, and is further illustrated with experimental
results.

I. INTRODUCTION

A driving motivation behind much of cognitive robotics

research today is the notion of a personal robot companion

that would be capable of aiding people in their daily activi-

ties. Special cases of this are systems to care for the elderly,

robotic home and office assistants, and interactive robot toys

for children. For each of these applications, the human and

robot involved must perceive and represent the world in

a similar fashion, so that they can collaborate effectively.

Since humans understand the world largely based on visual

information, robots targeted as personal companions should

also rely on visual input. A human-like visual attention

system would help a robot with both obstacle avoidance

(e.g., noticing everyday objects it might bump into, and also

spotting black-yellow warning sticker tape), and for more

natural human–robot interaction (e.g., “Robot, fetch me my

coffee mug!”).

Many of the competences required for a completely visual

home assistant are beyond the boundaries of current state-

of-the-art research. In particular, recognising visual objects

based on their semantic meaning, often referred to as object

category recognition, has recently received extensive atten-

tion from computer vision researchers [1], [2], [3], [4], [5].

The focus of much of this research has been on learning ap-

pearance from large databases of static images or on indexing

images from the web based on their meaning. This scenario

is significantly different from the one faced by a robot

in an ever-changing home environment where recognition,

navigation, planning (both for robot motion and the robot’s
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Fig. 1. The “Curious George” robot platform.

view), and interaction must all occur simultaneously. One

example of a robotic system capable of object recognition in

realistic settings is [6], which is similar in spirt it our system.

Robotics researchers have also recently considered producing

semantic maps based on the locations of objects (for example

[7]), but there are still many remaining challenges related

to learning visual representations of objects and integrating

these semantic concepts with other robot behaviours. This

paper presents an integrated solution to many of these chal-

lenges and describes a system which is capable of performing

real-world object recognition in realistic scenarios.

Our efforts have been motivated and directed by the

Semantic Robot Vision Challenge (SRVC) [8], recently held

at the Association for the Advancement of Artificial Intel-

ligence (AAAI) conference. This challenge is divided into

three phases. During the training phase, robots are required

to build visual representations of a previously unknown list

of objects in a short time frame, using only images collected

from the World Wide Web. In the exploration phase, the

robots examine a contest environment, which is constructed

in a semi-realistic fashion, and contains the objects listed,

as well as other distracting objects. The final phase is

recognition, where objects must be identified with semantic

labels by matching images obtained in the first two phases.

Performance is evaluated by comparing the robotic system’s

classification output with a human’s labeling of the objects.

The physical system described in this paper finished

first in the robot-league of the 2007 SRVC. Many of the

design choices and physical specifications have been made



somewhat specific to that scenario, and should be changed for

a more general-purpose application. Specifically, the SRVC

separated the recognition problem into three phases, whereas

running all components in parallel during the operational

lifetime would be desirable for a robot companion. Also, the

strict time requirement meant that mapping needed to occur

as quickly as possible, and that highly accurate sensors were

desirable. For this reason, the mapping procedure described

in section IV uses a laser range finder, whereas visual

mapping such as the method of Sim et al. [9] would be

preferable both for reasons of cost and safety.

The focus of this paper is a description of the behaviour

used during environment exploration phase of the SRVC.

The goal during this phase was to collect numerous, high-

quality views of each of the objects. Due to the time-

constraints of the contest, these views had to be collected

without performing object recognition, but instead by quickly

identifying promising objects and regions, which we will

refer to as potential objects. This pre-semantic identification

of interesting regions was inspired by the model of human

visual attention proposed by Rensink [10], where proto-

objects are detected subconsciously in the visual periphery,

and attention shifts between these to allow more detailed

consideration. Our potential object detection method can be

considered a simplified version of object discovery, such as

the method described by Southey et al. [11], which attempts

to faithfully segment meaningful objects using numerous

cues. In comparison, we produce a less precise segmentation

with less computation and rely on subsequent recognition to

refine the result.

The remainder of this paper will provide a detailed de-

scription for each component of our method. Section II

describes the hardware system. Section III describes the

potential object selection method, which serves to direct the

attention for our system. This is followed by a description of

the navigation, mapping and coverage algorithm in Section

IV and then by a brief description of the visual object

recognition approach in Section V. Section VI presents

results obtained during the SRVC as well as during further

testing conducted in our lab, which provide validation of

our approach. Finally, future work and perspectives will be

discussed.

II. HARDWARE

Hardware design is an important consideration when con-

structing a robot which is targeted at operating in a man-

made environment. Many extant robot platforms are lim-

ited by height, navigation ability and fixed direction sensor

platforms, so that interesting objects are inaccessible. For

example, objects located on desks or bookshelves in an office

are often too high to be seen by a robot’s cameras. Our robot

platform, “Curious George”, was designed to have roughly

similar dimensions and flexibility to a human, so that relevant

regions of the environment could be easily viewed and cate-

gorised. Our robot is an ActiveMedia PowerBot, equipped

with a SICK LMS 200 planar range finder. The robot’s

cameras are raised by a tower with height approximately 1.5

m. The cameras are mounted on a PTU-D46-17.5 pan-tilt

unit from Directed Perception which provides an effective

360◦ gaze range. See figure 1.

We employ a peripheral-foveal vision system in order to

obtain the high resolution required to recognise objects while

simultaneously perceiving a large portion of the surrounding

region. This choice has again been modelled after the human

perceptual system, and was also inspired by design choices

made in [12]. For peripheral vision, the robot has a Bum-

blebee colour stereo camera from PointGrey Research, with

1024×768 resolution, and a 60◦ field-of-view which provides

a low resolution survey of the environment. For foveal vision,

the robot has a Canon PowerShot G7 still image camera,

with 10.0 megapixel resolution, and 6× optical zoom which

allows for high resolution imaging of tightly focused regions.

III. ATTENTION SYSTEM

The attention system identifies potential objects using the

peripheral vision system, and focuses on these objects to

collect detailed images using the foveal system, so that

these images can be further processed for object recogni-

tion. Identifying potential objects correctly is a non-trivial

problem, due to the presence of confusing backgrounds and

the vast appearance and size variations amongst the items

that we refer to as a objects. Our system makes use of

multiple cues to solve this problem. Specifically, we obtain

depth from stereo to determine structures which stand out

from floor or background, and we process visual information

directly with a saliency measure to detect regions with

distinctive appearance. This section will describe the stereo

and saliency approaches in detail, and will describe the

subsequent collection of foveal images.

A. Stereo

The Bumblebee stereo camera is bundled with software

for computing depth from stereo. We use the output disparity

maps to detect obstacles and objects of interest, by detect-

ing regions with above-floor elevations, see figure 2. This

algorithm makes use of camera tilt (variable) and elevation

(static) to transform the disparities to elevation values. The

elevations are then thresholded at 10 cm, and the resultant

binary map is cleaned up by a series of morphological

operations. This helps to remove small disparity regions,

which are likely to be erroneous, and also fills in small gaps

in objects. The resultant obstacle map is used both to avoid

bumping into objects and tables, and in combination with

saliency to determine likely locations of objects.

B. Saliency

To detect potential objects we make use of the spectral

residual saliency measure defined in [13]. We extend the

measure to colour in a manner similar to [14]. That is, we

compute the spectral residual on three channels: intensity,

red-green, and yellow-blue. The results are then combined

by summing them to form a single saliency map. Regions

of multiple sizes are then detected in the saliency map using

the Maximally Stable Extremal Region (MSER) detector [15].



Fig. 2. Stereo computation. Top to bottom: Left and right input images,
disparity map, and obstacle map superimposed on right input image.

This detector is useful since it does not enforce a partitioning

of the scene. Instead, nested regions can be detected, if they

are deemed to be stable. Typically, MSERs are regions that

are either darker or brighter than their surroundings, but,

since bright in the saliency map corresponds to high saliency,

we know that only bright regions are relevant here, and

consequently we only need to run half the MSER detector.

Bright MSERs are shown in red and green in figure 3.

Regions are required to have their smallest saliency value

above a threshold proportional to the average image intensity

(which is justified since spectral saliency scales linearly

with intensity changes). This gives us automatic adaptation

to global illumination and contrast changes. The regions

are further required to be more than 20% smaller than the

next larger nested region, to remove regions that are nearly

identical. To ensure that the salient regions are not part of the

floor, they are also required intersect the obstacle map (see

section III-A) by 20%. Regions which pass these restrictions

are shown in green in figure 3.

Compared to [14], which can be considered state-of-the-

art in saliency detection, the above described detector offers

three advantages:

1) The use of spectral saliency and the MSER detector

makes the algorithm an order of magnitude faster. (0.1
instead of 3.0 seconds in our system).

2) The use of the MSER detector allows us to capture

both objects and parts of objects, whenever they con-

Fig. 3. Saliency computation. Top to bottom: Input image, colour
opponency channels (int,R-G,Y-B), spectral saliency map, detected MSERs,
and MSERs superimposed on input image.

stitute stable configurations. This fits well with bottom-

up object detection, since objects typically consist

of smaller objects (object parts), and we would not

want to commit to a specific scale before we have

analysed the images further. The multiple sizes also

map naturally to different zoom settings on the still

image camera.

3) The use of an average intensity related threshold allows

us to output zero or many salient regions, depending on

the image structure. This is in contrast to the Walther

toolbox [14], which, due to its built-in normalisation,

only can order salient regions, but never decide that

there is nothing interesting in the scene.

Note that the potential objects are not necessarily what one

would normally call objects. They are equally likely to be

distracting background features such as intersecting lines on

the floor, or box corners. The purpose of saliency is merely



to restrict the total number of possible gazes to a smaller set

that still contains the objects we want to find. This means that

it is absolutely essential that the attended potential objects

are further analysed in order to reject, or verify their status

as objects.

C. Gaze control

In order to actually centre a potential object in the still

image camera, we employ the saccadic gaze control algo-

rithm described in [16]. This algorithm learns to centre a

stereo correspondence in the stereo camera. To instead centre

an object in the still image camera, we centre the stereo

correspondence on the epipoles (the projections of camera’s

optical centre) of the still image camera in the stereo camera.

In order to select an appropriate zoom level, we have

calibrated the scale change between the stereo camera and

the still image camera for a fixed number of zoom settings.

This allows us to simulate the effect of the zoom, by applying

the scale change to a detected MSER. The tightest zoom at

which the MSER fits entirely inside the image is chosen.

IV. SPATIAL REPRESENTATION

An embodied recognition system must do more than

simply recognising semantically meaningful objects which

are directly in its field of view at a single moment in time.

It must additionally move safely through its environment,

record the locations of detected objects, and plan its motions

to discover new objects. That is, it must be able to represent

spatial-semantic information. Our system accomplishes this

by: 1) building a geometric map representation of the space

it has so far encountered; 2) using this map to guide further

planning and exploration; 3) covering the space with the

visual attention system to search for objects; 4) annotating

objects in the map when they are first discovered; and 5)

updating the object locations and properties over time by

looking-back from different viewpoints. This section will

describe each of these components in detail.

A. Geometric Mapping

Our system performs mapping with FastSLAM, a Rao-

Blackwellized Particle Filter implementation [17], which

builds a probabilistic occupancy grid [18] based on the laser

range finder readings and the robot’s odometry, and tracks the

robot’s position within the map. An occupancy grid is well

suited to guide navigation and planning tasks for a mobile

robot moving on a flat surface since it mirrors the inherently

2D nature of this environment. We have implemented a

layered planning architecture where goals proposed by one

of the high level behaviours described below are achieved by

following a lower level path produced by A∗-search through

the occupancy grid. Finally, the Vector-Field Histogram local

planner described by Borenstein et al. [19] is used for local

obstacle avoidance and to adapt to dynamic changes in the

environment.

B. Exploration Planning

We employ the frontier based exploration technique de-

scribed by Yamauchi et al. [20] to quickly cover the environ-

ment with the laser scanner and produce an initial map. As

is illustrated in figure 4(a), a frontier is defined as the border

between explored and unexplored space. For our system,

these frontiers will be the locations just beyond the range

of the laser scans, and in the laser shadows created behind

objects or around corners. The frontier planning technique

identifies candidate locations where laser scans would be

most likely to uncover new regions to explore. First, one of

these promising locations is chosen, then the robot moves to

this location, and the map is updated. This process is iterated,

until all regions have been explored.

C. Coverage Planning

Each time a region of the environment is observed with the

peripheral camera, the attention system has the opportunity

to detect potential objects within that area. In order to

maximise these opportunities, the camera should be pointed

in directions which cover as much new territory as possible.

We use an iterated greedy search based on visible area

weighted by the number of previous observations, to select

favourable directions. This approach causes the camera to

cover the environment roughly uniformly and give an equal

chance of detecting potential objects in any location.

D. Object Permanence

The set of available object poses in visual training data

collected from the web is often incomplete. One tends to

get the characteristic views [21] (e.g., a shoe is normally

photographed from the side, and hardly ever from the front),

rather than a uniform sampling of views. In order to recog-

nise objects from such limited training data, we attempt

to direct the foveal camera towards previously detected

potential objects from various views. This behaviour ensures

that the object is recognised even if the training data is

biased towards one, or a small number of viewpoints. To

allow collection of highly distinctive viewpoints, the previous

views of an object vote for nearby angles into a histogram

with values in the range [0, 2π], and histogram bins with low

scores are selected. That is, views from a completely new

direction are favoured over those from similar angles. We

again employ greedy search over histogram values and iterate

the procedure to obtain roughly uniform coverage of viewing

angles. Once a direction is selected, the hierarchical planning

method moves the robot to the desired viewing position and

a foveal image is collected. Figure 4(b) shows an example

of a path produced during this behaviour.

V. OBJECT RECOGNITION

While we focus on robot exploration and image collection

in this paper, it is also important to briefly discuss our method

for subsequently recognising objects in the images. This sec-

tion will outline our approach for training object classifiers

and for evaluating these on the images collected by our robot.

The current object recognition subsystem collects its training



(a) (b)

Fig. 4. Paths are planned to achieve numerous goals. (a) Path towards frontier of unexplored space (indicated by blue dots) allow for exploration. (b) A
path to another clear view of an object (indicated by a yellow dot) can be used to obtain multiple views. Legend: + start of path. • end of path.

data from images returned by text-based queries to internet

image search engines. These search results will likely contain

numerous images containing the desired object, but will also

almost certainly contain some mislabelled images, cartoon

representations of the object, and extensive clutter. Such

unstructured image data makes learning an object appearance

model quite challenging, particularly when coupled with the

time constraints of the competition. Heuristic re-ranking of

the images can focus attention on more useful images. Our

system uses colour histogram analysis to demote images with

few colours, which are likely to be an artist’s renderings

and promotes uncluttered images with homogeneous back-

grounds using colour image segmentation.

Unfortunately, the training data will remain challenging

even after such processing, so general classifier learning

approaches such as Zhang et al. [22] were found to be

ineffective. It was still possible to recognise particular images

using the local feature matching approach described by

Lowe [23]. So, our training phase currently consists of a

computation of SIFT features and their geometric relations

for the training examples. Of course, this method is as

likely to match incorrectly labelled images as the correct

ones. So, we search for consistency in the training set by

evaluating pairwise similarity. Images which mutually agree

upon object appearance are ranked highly and are tried first

for recognition.

Our recognition system searches for matching features

between training and test images. These matching features

allow us to detect objects and evaluate the confidence in

the detections. That is, a large number of geometrically

consistent feature matches indicates a high likelihood that the

object is present in the image. If multiple images are labelled

as containing a particular object, the system outputs the

one with the highest confidence. The locations of matched

features in the robot’s images are used to determine the likely

position and extent of the object and produce a bounding

box. The quality of the bounding boxes (compared to ones

manually drawn by the judges) were used to determine the

score at the Semantic Robot Vision Challenge.

VI. EXPERIMENTAL RESULTS

A. Semantic Mapping

The combination of techniques described in the previous

sections endow a mobile agent with the ability to explore

its environment and to recognise the objects it discovers.

This behaviour can be easily extended to spatial-semantic

mapping by back-projecting the recognised objects into the

robot’s map representation of the world. In our case, the

probabilistic occupancy grid constructed from laser range

scans fed through the FastSLAM algorithm can be aug-

mented with the locations of visual objects. For example, fig-

ure 5(b) and 5(c) illustrate the locations of objects matching

the labels “robosapien”, “basketball”, and “recycling bin”.

The object recognition subsystem was provided with between

2 and 4 example views of each object, see figure 5(a) for an

example. Each of the objects was recognised from various

locations, giving several pieces of information about the

objects positions, and allowing for collection of numerous

views which can be used for recognition or future matching.

We envision that the types of maps illustrated here could

be easily used in a human-robot interaction system where

the human operator would be able to relay commands to the

robot in semantically meaningful terms.

B. SRVC Contest Performance

As mentioned earlier, the 2007 SRVC contest was com-

posed of three phases: web search, exploration, and clas-

sification. The abilities of the intelligent system described

in this paper were demonstrated in the SRVC, where our

system was the winning entry in the robot league. Figure

6 demonstrates several of the objects correctly classified

by our system during the final round of the contest, along

with several of the misclassifications. As can be seen by the

images, the contest environment was not completely realistic,

but it was sufficiently complicated to present a significant

challenge for current state-of-the-art recognition systems. It
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Fig. 5. Combining the spatial awareness provided by SLAM with object recognition, meaningful object labels can be assigned to locations in the map.
(a) Training data for object “robosapien”. (b) Overview photo of the room the robot is exploring. (c) The map with three objects, and the locations from
which they were observed. Legend: ©−− robot poses where objects were first seen, � object “basketball”, ♦ object “recycling bin”, ∇ object “robosapien”.

was impossible to view all candidate objects from any single

location, so robot motion and collection of multiple views

of each object was essential. Also, many of the objects were

placed in highly cluttered locations such as table tops, which

would cause confusion for saliency methods that do not take

into account that parts of objects may also themselves be

objects. The navigation and attention systems described in

sections III and IV were sufficiently successful at exploring

and determining the locations of interesting objects to deal

with these challenges.

VII. CONCLUSIONS

In this paper, we described an intelligent system capa-

ble of building a detailed semantic representation of its

environment. Through careful integration of components,

this system demonstrates reasonably successful and accurate

object recognition in a quasi-realistic scenario. Significant

work is still needed to produce a system which will op-

erate successfully in more general environments such as

homes, offices, and nursing homes, where personal compan-

ion robots are intended to operate. In such environments,

challenges include the level of clutter, number of distinct

objects, non-planar navigation, dynamic environments, and

need to operate in real time, among many others. While

the current implementation of our system is not sufficiently

sophisticated to be successful in these environments, we

believe there are several additional components which would

bring this closer to reality.

The object permanence ability is useful for looking back

at previously seen objects while moving about, and thus to

get new views of objects. These new views can be used,

either to establish object identity in cases where this fails

from a particular view, or to extend the object models with

more training examples, and thus make them more robust.

Online and life-long learning are both promising directions

towards developing a truly useful home companion which is

able to interact with people and visually ground objects of

common interest. A large challenge to such a system is to

learn to recognise the set of objects and classes which are

useful in the particular scenario of interest. This problem

is confounded by the fact that the set of such objects

will change, and further, that their appearances may change

over time. Adaptation is clearly needed to overcome these

challenges, but an even stronger comment can be made. It is,

in many cases, an easier visual task to recognise objects when

trained in the particular circumstances and on the particular

objects which will be required during operation. Active

training data acquisition as facilitated by object permanence

is needed to extend the crude models obtained from the web,

and to adapt to changing object appearances, (e.g., due to

wear and tear).

Context is a currently untapped source of information

which can be used to aid the spatial-semantic recognition

task. Contextual information such as the type of room being

examined would help to prioritise recognition effort towards

those objects likely to be present. Spatial context allows for

preferential search based on the height and position at which

an object is normally found. Some interesting attempts to

incorporate context using the gist descriptor [24] are given

in [25].

We believe that the prospect of a useful mobile robot

companion is a realistic medium term goal and that many

of the components discussed in this paper will be essential

to the realization of such a system. It will continue to

be important to evaluate approaches that extract semantic

meaning from visual scenes in realistic scenarios, and also to

integrate such systems with active, mobile systems, in order

to achieve robustness and generality. The system described

here is one step along this path.



(a) (b)
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Fig. 6. Recognition results recorded during the official run of the 2007 SRV Contest. (a-d) High quality views obtained by the focus of attention system,
allowing for correct recognitions. (e-f) The system’s best guesses at objects for which no good views were obtained – these are clearly incorrect.
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