
Learning Saccadic Gaze Control via Motion Prediction

Per-Erik Forssén

Department of Computer Science

University of British Columbia

2366 Main Mall, Vancouver, B.C.

perfo@cs.ubc.ca

Abstract

This paper describes a system that autonomously learns

to perform saccadic gaze control on a stereo pan-tilt unit.

Instead of learning a direct map from image positions to

a centering action, the system first learns a forward model

that predicts how image features move in the visual field as

the gaze is shifted. Gaze control can then be performed by

searching for the action that best centers a feature in both

the left and the right image. By attacking the problem in a

different way we are able to collect many training examples

in each action, and thus learning converges much faster.

The learning is performed using image features obtained

from the Scale Invariant Feature Transform (SIFT) [14] de-

tected and matched before and after a saccade, and thus

requires no special environment during the training stage.

We demonstrate that our system stabilises already after 300
saccades, which is more than 100 times fewer than the best

current approaches.

1. Introduction

This paper describes a system that autonomously learns

to perform saccadic gaze control on a stereo pan-tilt unit. It

is well established that saccades in humans are too fast to

involve visual feedback [6]. Thus, the goal of saccadic gaze

control is different from visual servoing, where an error in

visual space (or some state space, e.g. pose) is minimised

through closed-loop control. Instead, given the coordinates

of an object in both left and right image of a stereo pair,

the system should directly output the pan and tilt states for

which the object is best centred in the stereo pair. Once such

a mapping is known, the system will be able to shift its gaze

quickly between different objects in the scene.

Saccade control in humans is useful for rapid visual ex-

ploration of a scene. Beside scene exploration, we also in-

tend to make use of the saccade control ability in an assisted

learning setting, where the robot should be able to make in-

quiries about objects to a nearby person, by means of look-

ing at an object and asking a question, see Figure 1 for an

illustration. Using gaze to indicate objects of interest re-

quires that the gaze shift is both fast (to retain the interest of

the assisting person) and accurate, such that there should be

no doubt about which object the robot is inquiring about.

Figure 1. Using gaze instead of pointing to

indicate an object of interest. Left: Robot

and person indicating a common object of in-
terest. Right: Close-up of the pan-tilt stereo

head.

In human-robot interaction, saccadic gaze control is also

important for making eye contact. Here gaze is used as

a non-verbal indication that one is paying attention to the

other party in a conversation [18], and to indicate that one

intends to address someone [11]. Gaze can also be used

as an aid to grasping, by indicating in which direction an

object is located [9], and for pose estimation in the action

space [12].

1.1. Review of related work

Bruske et al. [6] learned saccade control using a neural

network called Dynamic Cell Structures (DCS), which was

trained using feedback error learning (FEL). In their ap-

proach the computer vision aspect of the problem was by-

passed by having a controlled stimulus in the form of a dark

room and a single point light source. Another example of a

system using FEL and a point light source is described by

Berthouze et al. [3]. This system, however learns both sac-

cade control and tracking within the same framework. They

also track objects and imitate wavy motions using image

optical flow as input.

Hoffmann et al. [9] have a more biologically inspired

approach to saccade control learning. They use somewhat

more general stimuli, in the form of a white table filled with

brightly coloured blocks. In their approach a target is se-

lected in the left image. The corresponding pattern is then

found in the right image using cross-correlation. A sac-

cade attempting to centre the pattern in both views is then

made, according to the currently best strategy, and the pat-

tern is then detected in the two images, again using cross-

correlation. If the error in the image plane is less than aver-

age, this sample is stored and eventually used to learn a new,

better strategy. This approach is called staged learning. It

improves on feedback error learning by not having to know

how errors in the image plane relate to errors in gaze.

Another related system is the one proposed by Léonard

et al. [12]. This system does not rely on a controlled envi-

ronment, instead a slowly moving camera is used, and this

allows the use of tracking for learning to center arbitrary

scene points. Since frames are captured during the center-

ing movement more training data can also be acquired dur-

ing each centering action. The gaze control function is then

learned on-line using reinforcement learning and incremen-

tal least squares in a regular gridding of the input space.

To simplify the gaze control function, the authors separate

the learning problem into one for learning pan control from

differences in horizontal image positions, and one for tilt

control from differences in vertical image positions. From

a practical point of view this approach seems quite reason-

able, it is also more versatile than the other approaches since

it does not rely on a controlled environment.

Finally, for a camera without radial distorsion, which ro-

tates purely about the camera centre, the motion of scene

points are given by a homography [8]. If the demands on

gaze accuracy are not too high, one can simply assume that

these conditions hold, and avoid learning altogether, as was

done in e.g. [7].

1.2. Contributions

Our main contribution is that in contrast to the reviewed

approaches [12, 9, 6, 3], we do not solve the problem using

reinforcement learning (RL) [17]. In RL, each action gives

us one example of inputs and outputs, and an associated er-

ror, or reward, and thus many actions are needed to success-

fully learn the mapping. For instance, Hoffmann et al. re-

port seven learning stages of 10 000 trials each [9] to learn

a saccade control mapping, Bruske et al. report 40 000 trials

[6], and Léonard et al. report 400 actions, with 100 − 150

frames during each action [12].

Instead of using RL, we propose to learn a forward

model that predicts how features in the image move as the

gaze is shifted. This learning problem is functional, which

reduces the amount of samples needed. Furthermore, each

action gives us many examples of the desired mapping (one

for each feature correspondence), and consequently our ap-

proach speeds up learning by several orders of magnitude.

Our approach is also an improvement compared to state

of the art, in the respect that we make no simplifying as-

sumptions about the relations between image changes and

the motor controls as was done in [6, 9, 12]. This makes

our approach easier to apply to any two-camera pan-tilt unit,

without needing to align the cameras.

We also demonstrate that the use of image features ob-

tained from the Scale Invariant Feature Transform (SIFT)

[14], removes the need for slow camera motions during

learning [12]. Instead the camera directly performs sac-

cades and then SIFT features are matched before and after

the saccade.

1.3. Notation

Throughout the paper, we will denote the pan-tilt state

at time t by s(t) = (φ(t), θ(t))T . Image positions in

the left and right images at time t are denoted pl(t) =
(xl(t), yl(t))

T , and pr(t) = (xr(t), yr(t))
T respectively.

2. Saccade Control Learning

The purpose of saccade control learning is to find a map-

ping that outputs a pan-tilt state that centres a given object

in the visual field

s(t)
pl(t)
pr(t)

 7→ s(t + 1) . (1)

The quality of a given output action s(t + 1) is given by the

centering error:

ε(s(t + 1)) = ||pl(t + 1) + pr(t + 1)|| . (2)

Here it is assumed that the image origin is the centre of the

image. Note that even though both pl and pr can never be

centered perfectly at the same time (2) still becomes zero

when they are positioned symmetrically about the origin.

By performing trial actions, and observing the resultant

errors (2), the learning problem can be approached using

reinforcement learning [17]. This is what was done in all

the approaches mentioned above [12, 9, 6, 3].

2.1. Movement Prediction Learning

In contrast to the reinforcement learning approach, we

propose to learn saccade control indirectly, by instead learn-

ing to predict how features will move in the image as the

camera is moved, given the current pan-tilt state. Once this

skill is mastered to some degree, it can be used in reverse

to generate reasonable saccades for centering an observed

object.

The inputs of the sought mapping are the states before

and after the saccade s(t), and s(t + 1), and the image co-

ordinates before the saccade pl(t), and pr(t). The outputs

are the predicted image coordinates pl(t+1) and pr(t+1).
That is, we learn the 8 to 4-dimensional predictive mapping

s(t)
s(t + 1)
pl(t)
pr(t)

7→

(

pl(t + 1)
pr(t + 1)

)

. (3)

Note that we do not make any simplifying assumptions

about the geometry, such as yl = yr [6, 9], or φ(t + 1) =
f(xl(t), xr(t), φ(t)) [12]. This makes our approach easy to

apply to any two-camera rig.

2.2. A Forward Model

Our motion prediction learning can be considered a for-

ward model [10] of (1), also known as a system identifica-

tion step [13] in control theory. Forward models are useful

in situations where the inverse model, i.e. (1), is non-unique,

or multi-valued. For the saccadic gaze control problem, a

forward model would learn to predict how a point that the

system tries to center actually moves. Since our mapping is

one-to-one, there would seem to be no obvious advantage

with using a forward model here.

However, instead of directly going for the centering goal,

where each action only gives us one observation, our system

first has the goal of predicting how all points in the scene

move. To attain this goal it is obvious that as many mo-

tion vectors as possible should be collected in each saccade.

Only when the motion prediction skill is mastered, the sys-

tem switches to the centering goal.

3. Perception System

We make use of SIFT features [14] to find corresponding

points before and after a saccade. A SIFT feature consists

of a location (x and y coordinates, a reference scale and

a rotation) and a 128-byte descriptor vector that describes

the local image region around the location. We find cor-

responding points by matching SIFT features according to

least squares descriptor distance. For a correspondence to

Figure 2. Feature matching across a sac-
cade. Top: Stereo pair before saccade, with

matched SIFT features painted in. Bottom:

Stereo pair after saccade, with 114 estimated
feature motion vectors painted in. The sac-

cade shown has a pan change of 20◦ and tilt

change of 14◦. Each image has a 640 × 480
resolution.

be accepted we require that the best match from left to right

image also is a best match from right to left. Additionally

we require the correspondence to be the best one from the

first stereo pair to the second, and from the second to the

first. By using this forward-backward checking approach,

we remove the need for thresholds, and eliminate nearly all

false matches.

Figure 2 shows an example of the training data obtained

by matching SIFT features across a saccade. For this partic-

ular example we obtained 114 different motion vectors that

all share the same start s(t) and end state s(t + 1).

3.1. Hardware

The stereo camera used in the experiments is a Bumble-

bee from PointGrey Research. It delivers pairs of synchro-

nised frames in 640 × 480 resolution at 30 Hz rate. The

camera is mounted on a PTU-D46-17.5 pan-tilt unit from

Directed Perception, see Figure 1, right. As can be seen

in Figure 2, the images we obtain are uncalibrated, and thus

contain significant amounts of radial distortion (e.g. straight

world lines are bent in the image plane), and the verti-

cal axes of the two cameras are not perfectly aligned (see

e.g. the cable loop at centre bottom of the two upper im-

ages). As we shall see in the following, our algorithm has

no problem coping with this.

Figure 3. Pan-tilt states visited after 75, 150,

300, and 600 saccades. The search box for
a new saccade is shown by the dashed box

in the top left figure. The full range for pan

(horizontal axis) is [−90, 90], and the tilt range

(vertical axis) is [−47, 31].

4. Exploratory Movements

To acquire training data for learning the movement

prediction map (3), the robot generates semi-random ex-

ploratory movements that successively cover the state-space

with increasing density, see Figure 3. The exploratory ac-

tions are chosen one-at-a-time using knowledge of K pre-

viously visited states {sk}
K
k=1

. This knowledge is specified

in the form of a kernel density estimator (see e.g. [4]):

p(x) = γ

K
∑

k=1

exp(−.5||sk − x||2) . (4)

The scaling γ > 0 ensures that (4) sums to 1. We now want

to find a new action sK+1 that maintains the density p(x)
close to uniform, under the constraint that the action should

center something that is actually in the visual field. To find a

suitable new action, we randomly generate 50 possible new

states P = {xn}
50
n=1 in a square search box with side 50◦

(should be smaller than the field-of-view) centred around

the current state. The search box is cropped by the box

defined by the maximum and minimum pan and tilt states,

see Figure 3, top-left. The action chosen is the one which

minimises (4), i.e.:

sK+1 = arg min
xn∈P

p(xn) . (5)

As can be seen in Figure 3 this mechanism is effective in

producing an approximately uniform density as the number

of samples is increased.

Mere coverage of the state space is not enough to en-

sure a good sampling for learning (3), however. Neigh-

bouring samples in time, s(t) and s(t + 1), also have to

cover the set of possible movement distances and directions

well. Figure 4 shows the distribution of gaze displacements

d = s(t) − s(t + 1), after 600 saccades. As can be seen,

with the exception of very small gaze displacements, we ob-

tain a good coverage. We can thus expect a slightly lower

accuracy for very small saccades.

−25 0 25
−25

0

25

Figure 4. Gaze displacement coverage.

4.1. Learning Motion Prediction

We make use of memory based learning and locally

weighted regression [1, 15] to represent the predictive map-

ping (3). That is, we store a number of prototype samples,

and produce an output by interpolation from these proto-

types.

To select prototypes, we employ a variant of batch K-

means clustering [4]. Instead of starting the clustering by

assigning each sample a random label, we start by randomly

picking K samples as cluster centres. This ensures that

each cluster has at least one member after K-means has con-

verged. In all other respects our implementation is identical

to the formulation in [4].

We apply K-means to the full 12 dimensional space

spanned by both inputs and outputs of the sought

map (3). This gives us a set of prototype vectors

aT
n =

(

s(t) s(t + 1) pl(t) pr(t)
)T

with associated

responses uT
n =

(

pl(t + 1) pr(t + 1)
)T

, which can be

arranged in a tree for fast near neighbour access [2].

To evaluate the mapping for a new query sample a, we

find its D nearest neighbours {ad}
D
d=1

, and their associated

responses {ud}
D
d=1

, by accessing the tree. We then fit a

linear model ud = Cad, to the neighbours using weighted

least squares:

Ĉ = arg min
cij

D
∑

d=1

|| (ud − Cad)W||2 . (6)

Here C is a 4 × 8 matrix representing the local model, and

W is a diagonal matrix containing weights for each sample.

The weights wd are a Gaussian function of the prototype

distance:

wd = exp(−.5||ad − a||2/σ2) . (7)

The kernel scale σ is adapted to the local sample density

according to:

σ =
r

D/2

D/2
∑

d=1

||ad − a|| , (8)

where r is a parameter to be tuned [15].

The network output for the query point a is now given

by

û = Ĉa . (9)

Often prototype-based learning instead makes use of a

weighted average of the neighbours, i.e.

û =

∑D
d=1

wdud
∑D

d=1
wd

, (10)

see, e.g., [15]. Such an approach makes the implicit as-

sumption that the function is locally constant. Our alterna-

tive is slightly more computationally expensive, but has the

advantage of using a local hyperplane model. This reduces

the number of prototypes needed, and gives better extrapo-

lating behaviour whenever most neighbours end up on one

side of the query point.

5. Saccade Control from Motion Prediction

We will now make use of the learned predictive map (3)

to find an action that centers a pair of corresponding points.

In addition to the corresponding points pl(t) ↔ pr(t) we

also know the current state s(t) in (3). This means that by

choosing an action s(t + 1) we can predict the new feature

positions using (3), and then compute the centering error

(2). Since the best action s(t+1) is the one with the smallest

predicted centering error, we can now find a good centering

action by performing a minimum value search.

5.1. Minimum value search

The minimum value search of (2) is performed by iter-

atively fitting a polynomial to 9 points sampled in a 3 × 3
grid around the current best guess. The search is started

with a grid box with offsets of −30◦, 0◦ and 30◦ relative to

the current value, for both pan and tilt. After each iteration,

the box is centered around the minimum of the estimated

polynomial and the box size is reduced by a factor 2/3, see

Figure 5 for an illustration. If the displacement of the box is

larger than 1/2 of the box side, the displacement is aborted,

and the box size is instead increased a factor 1.1. Typically

about 20 iterations, and thus 180 evaluations of (3) are re-

quired to zoom in on the minimum at PTU accuracy (which

is 0.0129◦). When the number of training samples is low,

the iterations should instead be stopped when the accuracy

−60 −40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

Figure 5. Minimum value search to find de-

sired pan-tilt state using the predictive map.

In this example, the first search step gener-

ates a displacement larger than 50% of the

box side, and this causes the box to be ex-

panded.

of the map is reached. This algorithm is a simplified succes-

sive interpolation algorithm [5]. This class of algorithms is

easy to apply to regression outputs, since they do not re-

quire computation of derivatives. For the search to guar-

antee convergence more sophisticated point sampling, and

adaptive size change of the search window are required, see

e.g. Brent’s method [5]. For the problem at hand however,

this algorithm appears to be sufficient.

The minimum value search is currently implemented in

Matlab, and takes on average 0.5 seconds to complete on

a 3 GHz Pentium 4 system. Since the implementation re-

lies heavily on for-loops, re-implementing this in C would

speed it up by a factor 5 − 10.

6. Experiments

6.1. Evaluation of Motion Prediction

In order to evaluate the algorithm used for learning the

motion prediction map (3), we generated a trajectory of 300
saccades according to section 4, and trained the predictive

map according to section 4.1. The 300 saccades gave a total

of 31 715 input-output samples for (3). This data-set will be

referred to as DS1.

A second data-set, DS2, was then generated from a dif-

ferent trajectory of 300 saccades (this gave us 29 525 sam-

ples). In order to see to what extent the learned mapping

would generalise to another scene structure, we then moved

the robot to a new location, with more nearby objects, and

generated a third 300 saccade data-set, DS3, (with 20 448

Data set xl yl xr yr

DS1 2.2118 1.9747 2.2252 1.9905

DS2 5.1275 4.4339 5.1701 4.4349

DS3 6.6577 6.3325 6.6814 6.3254

Table 1. RMS pixel errors for K = 16 000, D =
40, and r = 1.0.

Figure 6. Predictive map output. A stereo

pair with corresponding SIFT features before

a saccade painted in bright. Bright lines

show actual motion vectors generated by the

saccade. Dark lines show the predicted mo-

tion vectors. The saccade shown has a pan

change of 14◦ and a tilt change of 24◦.

samples).

The RMS errors on all three data-sets, after training on

DS1, are given in Table 1. For these results, the relative ker-

nel scale r for the weighted least squares was set to r = 1.0.

This value was chosen by trying r ∈ {0.2, 0.4, . . . 2.0} and

picking the one with the smallest RMS errors. A more flex-

ible approach is to instead learn r from training data, as

was done in [15]. To decide on the number of near neigh-

bours D, we tested D ∈ {10, 20, 30, 40, 50, 60} and se-

lected D = 40 since increasing the number made little im-

provement.

To put the size of the errors in Table 1 into perspective,

we have drawn the predicted motion vectors together with

the actual motion vectors in Figure 6. As can be seen here,

although the errors are a few pixels, the overall pattern is

correct.

For number of prototypes we selected K = 16 000. As

the number of prototypes is increased, the errors on DS1

will continue to drop, but on the other data-sets it tends to

level off and then increase slightly, with the minimum being

approximately at K = 16 000. This is shown in Figure 7.

To easier see where the optimum lies, we averaged over all

four coordinates and the data sets DS2 and DS3 to obtain

the single curve in Figure 8, left. The fact that the errors are

slightly lower for K = 16 000 than when using all samples

demonstrates that K-means actually serves a purpose other

0 8000 160002400032000
0

5

10

x
l(K

)

0 8000 160002400032000
0

5

10

y
l(K

)

0 8000 160002400032000
0

5

10

x
r(K

)

0 8000 160002400032000
0

5

10

y
r(K

)

Figure 7. RMS pixel errors as function of

#prototypes for all three data sets. The
datasets are plotted as: DS1 circles, DS2

crosses, and DS3 squares.

than saving memory.

If we look at the errors for individual coordinates, see

Figure 7, we can note that the errors in prediction of the

vertical coordinates (y) is slightly smaller than the horizon-

tal prediction errors (x). The reason for this is probably that

most of the disparity changes are horizontal.

Since the errors for DS2 are significantly smaller than

for DS3, which uses a different scene with more nearby

objects, we can also conclude that the chosen prototypes

do not fully separate disparity from position in the scene.

To get rid of this effect, one would have to move the robot

around as it is learning. In section 7 we will introduce a

second, life-long tuning stage, that will allow the system to

adapt to scene changes.

To demonstrate that 300 saccades is sufficient, we ex-

tended DS1 to 600 movements, and tried learning (3) with

successively increasing numbers of actions between 50, and

600. All other parameters were kept constant. The result of

this experiment is shown in Figure 8, right. As can be seen,

the errors level off, and decrease much more slowly after

about 300 saccades.

6.2. Evaluation of Centering Saccades

In order to evaluate the quality of the centering saccades

obtained from the predictive mapping and the minimum

value search, we let the robot try to center SIFT correspon-

dences randomly selected from those currently available in

the field of view. After the saccade we find the features

again, and compute the centering error (2). This was re-

peated until 500 successful trials had been carried out. Dur-

0 8000 160002400032000
5

6

7

0 200 400 600
0

5

10

15

20

Figure 8. RMS pixel errors as function of

#prototypes (left) and #saccades (right). The

curves are averages of all four coordinates
over the two data sets DS2, and DS3. K =
16 000, D = 40, and r = 1.0.

ing this time, another 57 trials were carried out, but for these

the SIFT pair was not found again after the saccade. The

distribution of centering errors for the 500 successful trials,

is shown in Figure 9, left. The right plot shows the distri-

bution of gaze displacements d = s(t) − s(t + 1). During

the trials the min-value search diverged for 70 of the chosen

SIFT correspondences, and another SIFT correspondence

had to be selected for centering.

The maximal horizontal gaze shift is 320 pixels, which

corresponds to approximately 35◦. Thus a typical centering

error of 5.5 pixels (the position of the peak in Figure 9, left)

translates to about 0.60◦ gaze accuracy. As can be seen in

Figure 9, right, the distribution of gaze displacements shows

good coverage, with a slight preference for the centre. Good

coverage is a desirable quality if these trials should be used

for further tuning of the mapping.

0 10 20 30 40 50
0

20

40

60

−40 −20 0 20 40
−40

−20

0

20

40

Figure 9. Evaluation of generated trials. Left:

distribution of centering errors (in pixels) for

generated trial actions. Right: Distribution
of corresponding gaze displacements (in de-

grees) showing good coverage.

7. Life-Long Improvement

The memory based approach is actually well suited to

life-long improvement. A simple way to continuously im-

prove the centering saccade performance during use, is to

incorporate all successful centering saccades into the mo-

tion prediction mapping. The most simple way of doing

this would be to add the new observations to the prototype

set.

To demonstrate that the new samples are beneficial for

centering saccade accuracy, we repeated the experiment

from section 6.2, after appending 500 new observations to

the prototype set. The new observations were again ob-

tained by letting the robot pick random SIFT correspon-

dences and try to center them. The result of this is shown in

Figure 10, left. As can be seen, the new observations helped

to move the error distribution somewhat towards zero, and

the most likely error is now 0.49◦ (4.5 pixel) instead of

0.60◦ (5.5 pixel).

0 10 20 30 40 50
0

10

20

30

40

50

60

70

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Figure 10. Evaluation of continuous improve-
ment. Left: Distribution of centering errors

(in pixels) after appending the 500 trial ac-

tions to the prototype set. Right: Distribu-
tion of centering errors (in pixels) after letting

the 500 trial actions replace the most similar

prototypes. Dashed: The performance before

adding new actions (same as in Figure 9, left).

Just adding new prototypes will have the problem that

the memory will eventually be filled, and thus we also tried

letting each new observation replace the most similar proto-

type in the memory. The result of this is shown in Figure 10,

right. As can be seen, there is still a significant improvement

in performance, compared to before the prototypes were re-

placed. The reason for this is that the new observations have

gathered in a different way. Since the mapping is going to

be used for centering saccades, observations that do center a

correspondence will probably be more useful than those ob-

tained from the exploratory movements when learning the

motion prediction map. Clearly some sort of prototype re-

placement strategy makes sense, but the strategy presented

here is not necessarily the best one.

7.1. Cognitive Stages

In developmental sciences, the term cognitive stages

refers to the idea that learning related skills can facilitate

learning of a given difficult problem [16]. That is, to mas-

ter a difficult problem, the agent first learns a simple but

related problem, and then using the acquired skill learns

the difficult problem. For instance in child development,

the baby sequentially learns the competences sit, roll over,

crawl, and stand before it learns to walk. Each of these

competences can be viewed as enabling the following one,

since its requirements on muscle strength, control and co-

ordination are also needed in the next competence. In the

same manner, our motion prediction stage can be viewed as

enabling learning of saccadic gaze control.

8. Concluding Remarks

We have demonstrated how the competence of saccadic

gaze control can be mastered by learning to predict how

image features will move as the gaze is shifted. By attack-

ing the problem in a different way we are able to collect

many training examples in each action, and this results in

a more than 100 times faster convergence than the previous

approaches [9, 6, 12].

While the obtained accuracy of 0.60◦ after 300 saccades

is sufficient for an accurate gaze, there might be applica-

tions where higher accuracy is needed. For such applica-

tions, the second learning stage, which continuously tunes

the mapping, will be useful.

We have also demonstrated that learning of saccadic gaze

control can be performed without requiring special calibra-

tion hardware [6, 3], a controlled environment [9], or visual

tracking and slow camera motions [12]. Instead we can di-

rectly perform saccadic motions that center a given feature

of interest in the stereo pair.

9. Acknowledgements

The author thanks Jim Little and Julia Vogel for help-

ful comments on earlier versions of this manuscript, and

David Lowe for providing code for SIFT feature detection.

This work was supported by the Swedish Research Council

through a grant for the project Active Exploration of Sur-

roundings and Effectors for Vision Based Robots.

References

[1] C. Atkeson. Using locally weighted regression for robot

learning. In IEEE Conf. on Robotics and Automation, pages

958–963, Sacramento, CA, 1991.

[2] J. Beis and D. Lowe. Shape indexing using approximate

nearest-neighbour search in highdimensional spaces. In

Conference on Computer Vision and Pattern Recognition,

pages 1000–1006, Puerto Rico, 1997.

[3] L. Berthouze and Y. Kuniyoshi. Emergence and categoriza-

tion of coordinated visual behavior through embodied inter-

action. Machine Learning, 31(1-3):187–200, 1998.

[4] C. M. Bishop. Neural Networks for Pattern Recognition,

chapter 5. Oxford University Press, 1995.

[5] R. P. Brent. Algorithms for Minimization without Deriva-

tives. Prentice-Hall, 1973.

[6] J. Bruske, M. Hansen, L. Riehn, and G. Sommer. Adap-

tive saccade control of a binocular head with dynamic cell

structures. In ICANN’96, pages 215–220, 1996.

[7] S. Feyrer and A. Zell. Tracking and pursuing persons with

a mobile robot. In Int. Workshop on Recongition, Analysis

and Tracking of Faces and Gestures in Real-Time Systems,

Sept 1999.

[8] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2000.

[9] H. Hoffmann, W. Schenck, and R. Möller. Learning visuo-

motor transformations for gaze-control and grasping. Bio-

logical Cybernetics, 93(2):119–130, 2005.

[10] M. Jordan and D. Rumelhart. Forward models: Supervised

learning with a distal teacher. Cognitive Science, 16(3):307–

354, 1992.

[11] Y. Kuno, D. Miyauchi, and A. Nakamura. Robotic method

of taking the initiative in eye contact. In Conference on

Human Factors in Computing Systems, pages 1577 – 1580,

Portland, Oregon, USA, 2005. ACM Press, New York.

[12] S. Léonard and M. Jägersand. Incremental learning for map-

ping image variations to actions. In Proceedings of IEEE In-

ternational Conference on Robotics and Automation, pages

4235–4240, Barcelona, Spain, April 2005. IEEE.

[13] L. Ljung. System Identification: Theory for the User.

Prentice-Hall, 1987.

[14] D. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision,

60(2):91–110, 2004.

[15] D. G. Lowe. Similarity metric learning for a variable-kernel

classifier. Neural Computation, 7(1):72–85, January 1995.

[16] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. De-

velopmental robotics: A survey. Connection Science,

15(4):151–190, December 2003.

[17] R. S. Sutton and A. G. Barto. Reinforcement Learning, an

Introduction. MIT Press, Cambridge, Massachusetts, 1998.

ISBN 0-262-19398-1.

[18] Y. Yoshikawa, K. Shinozawa, H. Ishiguro, N. Hagita, and

T. Miyamoto. Responsive robot gaze to interaction part-

ner. In Proceedings of Robotics: Science and Systems, Cam-

bridge, USA, June 2006.

