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Neuromorphic Computing

– Term introduced by Prof. Carver Mead, Caltech, 1990

– Devices/algorithms that mimic biological neurons and 

neural networks (cells, synapses, spike signaling…)

– Used to model processes in the brain

– Used in Machine Learning (“Spiking Networks”)
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The Human Brain

• The brain contains about 86 billion neurons and 100 trillion 
synapses (approximately 1000 per neuron)

• The neocortex is a thin (2-4 mm) top layer. It contains 30 billion 
neurons and is responsible for our “intelligence” (cognition, 
sensory perception, language…)

• The operating frequency is 1 – 10 Hz and the power 
consumption 10-20 W ( < 1 nW/neuron)

• Energy consumption per synaptic event is 1 – 10 fJ.
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Looking inside – Neurons and connections

https://www.psypost.org/2017/11/newborn-neurons-find-proper-place-adult-brain-50061
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Neuron-to-neuron connection

• Neurons connect to other neurons via axons and dendrites

• The actual junction is called a synapse. It converts the electrical 
signal from the axon to a change in chemical concentration (of 
neuro-transmitters) in the receiving neuron. 

• A synapse can have an excitatory or inhibitory effect on its neuron. 

• When the summed concentration from all synapses exceeds a 
certain threshold, the receiving (post-synaptic) neuron generates 
an output pulse on its axon.

Reprinted from Versace et al, A mind made from memristors. IEEE Spectrum 2010
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Signaling between neurons

• Signaling between neurons is done by action potentials (spikes)
• A spike is about 1 ms long. Repetition rate varies from < 0.01 Hz to 

>200 Hz.
• Spike rate is a measure of the “strength” of the neural signal
• Example: neuron in the auditory track reacting to bursts of sound
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Signal representations

• Spike rate

• Time-to-first-spike

• Intra-spike distance

• Latency (related to other signals)

• Rank-order coding (within a population of neurons)
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How does a network of neurons learn?

• Synapses change their response (“weights”) when 
spike rate is high (short term plasticity)

• Synapses also adapt over a longer timeframe (long 
term plasticity)

• 40% of synapses of a neuron are replaced with new 
ones every day
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Short-term plasticity

• Short-term plasticity is a temporary increase in 
synaptic strength

• Appears when two or more action potentials on 
its input appear close in time (rate dependent)
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Long-term plasticity
• Long-term plasticity refers to persistence changes in the synaptic 

strength

• Long-term plasticity is based on the time difference between the 
pre-synaptic and post-synaptic response

• Long-term plasticity is believed to be the main mechanism behind 
learning and memory. Two main models: Hebbian vs STDP 
learning.

• Short absolute time difference leads to increased strength 
(Hebbian learning)

• Short positive time difference leads to increased strength 
(potentiation), short negative time difference leads to decreased 
strength (depression) (Spike Timing Dependent Plasticity, STDP 
learning)

Reprinted from: Bi G Q, Poo M M. Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J Neurosci, 1998, 18
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Electronic synapse models

Spike representations

• Voltage/current pulses (analog models)

• Digital values, event times (digital models)

• Stochastic representations

Implementations

• Resistors (MOSFET channel, ionic conductance…)

• Digital implementations

• Hybrid analog/digital
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C. Mead (1994) – The floating gate transistor synapse

Based on the same principle as EEPROM.
Ions is injected into the gate oxide after
which the gate is left floating => long-term 
plasticity
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L.O. Chua (1971) – The memristor

HP Labs
memistor 2008

Memristor synapse

”resistor with memory”
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J. Gerasimov (2019) – Evolvable organic electrochemical transistor

ETE-S:
sodium 4-(2-(2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)
thiophen-3-yl)ethoxy)butane-1-sulfonate

ETE-S (monomers in solution)

PETE-S (conducting polymer)

gold electrodes
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The evolvable OECT synapse

ΔV > 0,3 V

• Long-term potentiation—channel growth
• Long-term depression—channel over-oxidation

• Short-term potentiation—channel doping
• Short-term depression—channel dedoping

Reprint from J. Gerasimov et al, An evolvable organic electrochemical
transistor for neuromorphic applications. Adv. Sci. 2019.



Robert Forchheimer, Feb. 2020

17

Electronic models of synapses – other technologies

• RRAM (ReRAM)
• Electrochemical metallization
• Magnetoresistive RAM (MRAM)
• Phase change memory
• Carbon nanotubes
• Josephson junctions
• Digital implementations

Issues to consider
- Non-volatility
- Large dynamic range
- Multi-level
- Sustainability
- Short term/long term plasticity
- Small size
- Low energy consumption
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Energy efficiency – per synaptic event

Biological synapses: 20000 ATPs => 0.01 pJ

Analog synapses: 9 pJ (CMOS), 7.5 pJ (OFET)

Digital synapses: 26 pJ (TrueNorth)
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Neuron models

N
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Leaky Integrate-and-Fire model (LIF)

According to this model, the neuron has two internal state variables:

ui(t): Synaptic response current (weighted sum of filtered synaptic inputs)

vi(t): membrane potential (leaky integration of ui(t) )

au = exp. filter
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Simple neuron (+ synapses) model: linearly weighted inputs 
followed by a nonlinear activation function (W. McCulloch, W. 
Pitts, 1943)

Also known as the ”Perceptron” 
(F. Rosenblatt 1958)

The model differs from biological neurons:
- static representation of data (no spikes)
- memoryless
- lacks time-dependent plasticity
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Implementation of the Leaky Integrate-and-Fire (LIF) 
neuron model (shown with 4 resistive synapse inputs)

synapses neuron

Schematics Neuron output
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Implementing the LIF neuron with memristors (the ”Neuristor”)

Reprinted from Picket et al, A scalable neuristor built with Mott meristors. Nat.Material 2013, 12 
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CMOS neuron implementation

Indiveri et al, Neuromorphic Silicon Neuron Circuits. Frontiers in 
neuroscience. 5. 73. 10.3389/fnins.2011.00073. 
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Spiking networks

Architecture
• Fully or convolutionally connected
• Lateral inhibition

Learning
• Unsupervised learning through

synaptic plasticity

Reprinted from A. Tavanaei et al, Deep learning in spiking neural networks.  arXiv 1804.08150v4. Jan. 2019

MNIST classification

ANN result
(98%)
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MNIST results

Reprinted from A. Tavanaei et al, Deep learning in spiking neural networks.  arXiv 1804.08150v4. Jan. 2019
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Large-scale neuromorphic designs

Univ. of Manchester: SpiNNaker (research)

IBM: TrueNorth (research)

Intel: Loihi (commercial)

Brainchip: Akida (commercial)
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Univ. of Manchester - SpiNNaker (2010)

• Univ. of Manchester: SpiNNaker (Spiking Neural 
Network Architecture, 2010-2018)

• Uses 57 600 VLSI chips (18-core ARM9)

• Each VLSI chip emulates 18000 neurons

• A “full brain” simulator contains 1 billion 
neurons and runs in “real-time”.

• Power consumption: 100 kW (100 mW/neuron)

• Funding of 8 MEuro received 2019 to build 
second generation. Expected to reach 10 billion 
neurons.
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SpiNNaker – System architecture

The VLSI chips are connected in a toroidal network
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IBM – TrueNorth (2014)

• IBM: TrueNorth (2014)

• Each chip implements 1 million 

neurons and 256 million 

synapses

• 5.4 billion transistors

• Power consumption: 73 mW

(73 nW/neuron)

• Distributed architecture based 

on an event-driven network
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TrueNorth – core element

• Core element 256 neurons, 
256*256 synapses

• Size: 240μm x 390μm

• 4 096 cores per die (≈ 400 mm2)



Robert Forchheimer, Feb. 2020

Intel – Loihi (2017)

• Highly flexible 

neuromorphic chip.

• 131 000 neurons 

divided into 128 cores

• 130 M synapses

• 14 nm CMOS

• 2.07 billion transistors

Board with 64 Loihi chips containing 8 M neurons.
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• 1.2 M neurons,

• 10 billion synapses

• < 0.5 W

• 28 nm CMOS

• Planned release: 2020

• CNN support

Brainchip – Akida (announced)
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Spiking neural networks vs Artificial neural networks

SNN ANN
Synapse short-term memory √ —
Synapse long-term memory √ √
Neuron memory √ —
Learning mode unsupervised supervised
Power consumption low high
Hardware efficiency - analog high high
Hardware efficiency - digital high low
Industrial maturity low high
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Home assignment

Describe two examples how the basic learning scheme (Hebbian/STDP) 
can be augmented to make hardware implementation more efficient. 

Your report should include a description of the obtained improvements in 
terms of reduced hardware or faster computations or more efficient
learning.

(Hint: Select the examples from the list of Recent Publications)



Questions?


