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AlphaGo Overview

Policy Network

Fast Policy Network

Reinforcement Learning

Policy Network

Value Network

based on:
copyright:

Expert Games

130 000 Games
30M Positions

Supervised Learning

SL Policy
Position --> Next Move
Accuracy: 56%

Siiver, D. et al. Nature Vol 529, 2016
Bob van den Hoek, 2016

Expert Games

140 000 Patterns
130 000 Games
30M  Positions

Supervised Learning

Fast Policy
Pattern --> Next Move
Accuracy: 24%

Self-Play Games Reinforcement Learning

1.3 M Games by RL Policy

various versions Position --> Next Move
of RL Policy Wins 80% vs. SL Policy

Self-Play Games Reinforcement Learning

30 M Positions Position --> Win Probability

by fixed version 15 000 times faster than

of RL Policy MCTS Rollouts evaluations
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Artificial Intelligence — What is it? — Definitions

“Artificial Intelligence is the
science and engineering of
making intelligent
machines, especially
intelligent computer
programs.”

- John McCarthy, Stanford

“Artificial intelligence (Al) refers to
systems that display intelligent
behaviour by analysing their
environment and taking actions —
with some degree of autonomy —
to achieve specific goals.”

- EU Communication 25 April 2018

“the scientific understanding of the mechanisms underlying thought and
intelligent behavior and their embodiment in machines.” - AAAI
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Artificial Intelligence — Four Views

Empirical Sciences
Fidelity to human performance

Human-Centered

Mathematics/Engineering
|deal concept of Intelligence

Rationality-Centered

Systems that think like humans

Systems that think rationally

Thought Processes
Reasoning

"The exciting new effort to make computers
think. . .machines with minds, in the full and literal

sense.” (Haugeland, 1985)

”| The automation of] activities that we associate
with human thinking, activities such as decision-
making. problem solving, learning...”(Bellman,
1978)

"The study of mental faculties through the use of
computational models.” (Charniak and McDermott,

1985)

"The study of computations that make it possible to
perceive, reason, and act.” (Winston, 1992)

Systems that act like humans

Systems that act rationally

Behavior

"The art of creating machines that perform
functions that require intelligence when performed
by people.” (Kurzweil, 1990)

"The study of how to make computers do things at
which, at the moment. people are better.” (Rich and
Knight, 1991)

"Computational Intelligence is the study of the
design of intelligent agents.” (Poole et al.. 1998)

"Al. . .Is concerned with intelligent behavior in
artifacts.” (Nilsson, 1998)
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Russell & Norvig — Artificial Intelligence: A Modern Approach

Intematlond-
Edition

Artificial Intelligence

A MODERN APPROACH

Third Edition

Stuart Russell
Peter Norvig

Artificial Intelligence

PEARSON L A Modern Approach

Third Edition

Part I Artificial Intelligence
1 Introduction ... 1
2 Intelligent Agents ... 34
Part II Problem Solving
3 Solving Problems by Searching ... 64
4 Beyond Classical Search ... 120
5 Adversarial Search ... 161
6 Constraint Satisfaction Problems ... 202
Part III Knowledge and Reasoning
7 Logical Agents ... 234
8 First-Order Logic ... 285
9 Inference in First-Order Logic ... 322
10 Classical Planning ...366

Part V Learning
18 Learning from Examples ...693
19 Knowledge in Learning ... 768
20 Learning Probabilistic Models ... 802
21 Reinforcement Learning ... 830
Part VII Communicating, Perceiving, and Acting
22 Natural Language Processing ... 860
23 Natural Language for Communication ... 888
24 Perception ... 928
25 Robotics ... 971
Part VIII Conclusions
26 Philosophical Foundations ... 1020
27 Al: The Present and Future ... 1044

11 Planning and Acting in the Real World ... 401

12 Knowledge Representation ... 437

Part IV Uncertain Knowledge and Reasoning

13 Quantifying Uncertainty ... 480

14 Probabilistic Reasoning ... 510

15 Probabilistic Reasoning over Time ... 566
16 Making Simple Decisions ... 610

17 Making Complex Decisions ...645
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Al as Intelligent Agents

Goal

m /
Agent
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Al as Intelligent Agents

actuators

» The agent function maps from percept histories to actions:
[f: P* > A]

» The agent program runs on the physical architecture to
produce f

 agent = architecture + program
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Al as Intelligent Agents

1. While true {
2. Sense the world- (a) sensors, (b) communication, (c) supervisor input The-
1. Form perceptions— (a) concept triggering, (b) propioception
2. update beliefs (belief revision) Frame problem

3. update internal world model- (a) map, (b) localization, (c) relationships and attributes
3. Think about options, desires, intentions, and actions
1. Revise desirable options and select one

Action selection problem

2. Deliberate about what intention to achieve next; Replanning problem

3. Revise and update plan . .

4. use means-ends reasoning to get a plan for the intention; Envisionment prObIem
e 4 Act sensors

1. Revise intentions and select an intention to manifest
2. execute the plan
3. Suppress less important behaviors
4. Start control of actuators
« 5 Pause
1. until the world changes
2. Communicate
3. Generate and deliver user feedback
} effectors

percepts

actions
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HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems
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P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol F. Heintz and G. Conte. 2014.
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@& UNIVERSITET : : . :
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849-952.
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Erik Sandewall
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.
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Licensed under CC-BY-SA by the author Max Roser.
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The Internet of Things connects devices such as everyday consumer objects and industrial equipment
onto the network, enabling information gathering and management of these devices via software to increase
efficiency, enable new services, or achieve other health, safety, or environmental benefits.

Smart Thermostats Safety

Smart Appliances Vehicle diagnostics

System: ‘ Infotainment and
Navigation
oe Irity = =
Fleet Management

Smart Lighting

Entertainment

Systems

Real-Time Analytics Smart Meter Technology
Factory Automation Smart Traffic Lights
Robotics Smart Parking Meters
Supply Chain Efficiency Electric Vehicle Charging

Real-Time Analysis

Action Cameras

LINKOPINGS
II.“ UNIVERSITET




The growth of human and machine-generated data

Human Data
4.4ZB- 444 7B

10X Faster growth
than traditional
business data

Sensor Data
0.9ZB- 44.4ZB

50X Faster growth
than traditional
business data

Business Data

Source: Inside big data
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
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= e Neural Architecture Search
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Gap grows at
50% per year

Memory performance

Time

60%/yr
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Algorithmic, Knowledge-Based and Learning-Based Al

Knowledge added Training data added
by domain experts by domain experts

Al-program
written by

programmers

Algorithmic Knowledge-based Learning-based
(Pattern-based)
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Representations and Search
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Search

e Uninformed search
— Depth-first search ,
— Breadth-first search yoLe

-
R
— Recursive backtracking I A/ AN

* Informed / Heuristic search O ORROMC

— Best-first search Depth-first search
— A* search

— Branch-and-bound ﬁ.... ;E{

— Hill-climbing / Gradient descent R

—
_:—""_F-'_F
—_—
——
——

« Stochastic Search \®_ - ®_ . ®_ - @

— Monte Carlo Tree Search
— Stochastic Gradient Descent

Breadth-first search
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Search — Problem Definition

- Initial State : The state in which the agent starts or initial condition of the agent.

« States : All states that are reachable from initial state by any sequence of actions or all
possible states that the agent can take. This is also referred to as State space.

« Actions : All possible actions that the agent can execute. Specifically, it provides the
list of actions, that an agent can perform in a particular state. This is also referred to as
Action space.

« Transition Model : This property describes the results of each action taken in a
particular state.

« Goal Test : A way to check, whether a state is the goal.

« Path Cost : A function that assigns a numeric cost to a path w.r.t. performance
measure
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Search — Search Space

- State space: physical configuration

« Search space: abstract configuration
often represented by a search tree or graph
where a path is a possible solution.

« Search tree: representation of
configurations and how they are connected
by actions. A path represents a sequence of
actions. The root is the initial state. The
actions taken make the branches and the
nodes are results of those actions. A node
has depth, path cost and associated state in
the state space.

(0] X O X O X
X [ X X X X
xX|0|0 xX|O]|0 x|Oo|Oo
e 5/\6 7/\8
O X | X O X | X o) X OO0

X110 X 0] X0 X X

X010 X010 X {010 X |0

10 Jv 9 -10 "'

O|X|X 0|0

X|X]|0 X | X

X010 X |0
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Mini-Max

X
OfO|X
2 //%5
O X X]0 X X
X X O|X
O[O0 X O[O X o) O[X
. 4 , ¥ } |
O |X|X X| 0 X X | X
X X X 0| X
Ofo|X O[O X o) O X
X Wins. 10 /\ 1 X Wins. Wins.
X|X|O O|X|O
O [X] X X[ X] X
O[O X OfO|X

X Ultimately Wins. X Ultimately Wins.
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Efficiency and Representation

* Representations can be
analyzed and their efficiency
proved.

« The choice of abstraction /
representation influences
efficiency

Big-O Complexity
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Applications of Search

* Game playing (chess, Go, ...)
« Constraint satisfaction

« Optimization

« Machine learning

* Planning
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Knowledge Representation and Reasoning (KR&R)

« Knowledge representation and reasoning is a major sub-area of Al.
 Intelligence can be understood by studying knowledge.
« Knowledge is often defined as true justified belief in epistemology.
— Declarative knowledge
— Procedural knowledge
— Heuristic knowledge

* Representation is a relationship between two domains, where the first is
meant to “stand for” or take the place of the second.

* Reasoning is the formal manipulation of symbols representing
knowledge to produce a new set of symbols representing new knowledge.
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The Physical-Symbol System Hypothesis

A physical-symbol system has
the necessary and sufficient Symbol Systems

means for general intelligent y N‘f
action.

carry out the designated processes

Symbol Strl-JCtures ) Produce, destroy, modify Processes

— Necessary: any system exhibiting EXPP';‘:“'O”S
. . . atterns
intelligence will prove upon designate designate
analysis to be a physical symbol \ Can be interpreted:
system. Objects Processes

— Sufficient: any physical-symbol

. 2 : Can effect objects
systerp of sufficient size can be Can be affected by objects Artificial Cognitive Systems
organized further to exhibit general David Vernon, MIT Press
intelligence.
II “ LINKOPINGS Newell, Allen; Simon, H. A. (1976), "Computer Science as Empirical Inquiry:
@ UNIVERSITET Symbols and Search", Communications of the ACM, 19 (3): 113-126



Machine Learning
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Machine Learning

« Machine Learning is a branch of artificial intelligence that provides the
computer system the ability to progressively learn and improve its
performance on handling various tasks without being explicitly
programmed to perform all the task.

* Another definition of Machine Learning explains it as: the process of
trying to deduce unknown values from known values.

* More formally, study of algorithms that
— improve their performance P
— at some task T

— with experience E
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Machine Learning

Learning

Algorithm
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Machine Learning
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The Importance of Feature Selection
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Model Types
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Types of Machine Learning

« Supervised learning anprsir o
— Given input-output examples vaisaen (A O
f(X)=Y, learn the function f().
. . e ‘5:“'\ Unsupervised Supervised ,fr::::‘ Fopinsy
« Unsupervised learning Learning s e
o o o Clustering .
— Given input examples, find o e Machine Wi o

ustomer

patterns such as clusters Learning S0 e I
« Reinforcement learning

— Select and execute an action, get

Reinforcement

feedback, update policy (what e o
action to do in which state).

I Inkopnes  Dttps://www.techleer.com/articles/203-machine-learning-
I‘" UNIVERSITET  3lgorithm-backbone-of-emerging-technologies/
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Neural Networks

Inputs  Weights Net input Activation
function function

output layer

hidden layer

input layer

II.“ Hﬁ&%ﬁ'&% https://deeplearning4j.org/
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Convolutional Neural Networks

h
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Image Convolved otiTo
5 Feature .
detect edges

II “UNK@plNGS http://www.wildml.com/2015/11/understanding-
@ UNIVERSITET convolutional-neural-networks-for-nlp/
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Convolutional Neural Networks

/C JC JC JC X a2

B
8

i
poied
a

(/)

ol
2

$

‘ output layer

hidden layer 1 hidden layer 2

input layer

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as
visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron
activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and

the depth would be 3 (Red, Green, Blue channels).

LINKOPINGS : : : i .
Il. UNNERSITEr http://cs231n.github.io/convolutional-networks/



http://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

224x224x64 _ _
n2c1264| | Single depth slice
o 10124
X max pool with 2x2 filters
516 (7|8 and stride 2 6 | 8
l T 3 | 2 [N 3| 4
1123 | 4
224 downsampling ) &
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown

with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).
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Deep Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

1
1

~ew__ dog(0.01)

%gt (0.04)
boat (0.94)
bird (0.02)
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Deep Neural Networks
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
toform objects

Layer 2

I, ANINSSIT o pEs! |
Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction

II." HSK,%E'SEEST https://deeplearning4j.org/
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Recurrent Neural Networks

Recurrent network

W_I

output layer

input layer N~ (class/target)

hidden layers: “deep” if > 1
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Recurrent Neural Networks

one to one one to many many to one

Image in Image in Words in
Label out Words out Sentiment out

many to many many to many

English in Video In
Portuguese out Labels out

II “UNKopmGs https://leonardoaraujosantos.gitbooks.io/artificial-
o

UNIVERSITET

inteligence/content/recurrent neural networks.html



https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/recurrent_neural_networks.html

Untrained
Neural Network
Model
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TRAINING

Learning a new capability
from existing data

A\

TRAINING
DATASET

1N

Deep Learning
Framework

://blogs.nvidia.com/blog/2016/08
learning-training-inference-ai/

INFERENCE

Applying this capability
to new data

AN

Trained Model
New Capability

22/difference-deep-

NEW App or Service
DATA Featuring Capability

Trained Model
Optimized for
Performance

B
) [



https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

Traditional vs ML problem solving

Launch!

Y
Study the : Study the ; Train ML Evaluate
problem 1 Write rules problem algorithm solution
Analyze Analyze
errors errors
LINKOPINGS
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Image Classification

ImageNet Challenge

IMAGENET E \ N,

30%
25% e 1,000 object classes
= (categories).
5 20% e Images: .
8 o 1.2 M train
2 o 100k test.
S 15%
@
=
2 10% —
(v
:O_ Human Performance Zone
(]
5% ~-
0%
NEC-UIUC XRCE AlexNet ZFNet GooglLeNet ResNet SENet
(2010) (2011) (2012) (2013) (2014) (2015) (2017)

II LINKOPINGS
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WER(%)

100%

10%

4%

2%

1%

Speech Recognition

Swichbond Conversational Speech
Read
Speech
Broadcast
Speech .',
’ Pt Air Tra'vel X
anning Kios Varied
1 Speech Ilklo.phonu
\ 00 L
\
‘ News Enghsh umis
‘ " Noisy
\
5]
1 4
k|
° A °
L 4

1989

16
14

word 12
error
rate

e
~ o sequence loss
first DNN TeT
- ~ -~
e -
~ - - /TX more data
| T _
human level Tt~y
i P el |
1 L 1 1 1 1
2012 2013 2014 2015 2016 2017
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Neural Networks Timeline

Electronic Brain

Deep Neural Network

(Pretraining)
Multi-layered m N
XOR Perceptron A
ADALINE (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)

" .
' 4
> ¥ y
Y e R
/. W )
A )

idrow = M. Hoff

S. McCulloch - W. Pitts F.Rosenblatt ~ B.W
XAND Y XORY NOT X @ - Foward Act|V|ty —p b : —._
Jr— A A - 4 - .
W, W. Wy \W, o —_" e |
+1H 2 #1741 ) -1 05 g
x/ ‘|{ \+| x/ !( \+| )I( o Q 0 o <@—— Backward Error

+ Solution to nonlinearly separable problems  « Limitations of learning prior knowledge * Hierarchical feature Learning

« Adjustable Weights ; ; ) ’ 2 :
» Big computation, local optima and overfitting * Kernel function: Human Intervention

* Weights are not Learned

» Learnable Weights and Threshold » XOR Problem

II.“ LNKOPINGS https://beamandrew.github.io/deeplearning/2017/02/23/deep learning 101 partl.html



https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Training, Validation, and Test Data

Training
Data

Learning
Algorithm

Validation
Model
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Precision and Recall

relevant elements

false negatives true negatives
O
® 9 ® o How many selected How many relevant
items are relevant? items are selected?
true positives false positives . .
Precision = ——— Recall =

selected elements

II. HQK,%E@%EST https://en.wikipedia.org/wiki/Precision and recall



https://en.wikipedia.org/wiki/Precision_and_recall

Machine Learning Process

e
=>4

Validation

Data

Test
Data

Training + Learning
Data Algorithm

II LINKOPINGS
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Underfitting and Overfitting

4 4
; 3
2
2 ®
1
1 0
0 1 ® o
050 05 ? 15 2 25 050 059 15 2 25
appropriate underfitting

_015 0 0,5 1,5 2 2,5

overfitting
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With a p = n — 1 degree polynomial, we can fit n data points perfectly.

12 4
10 |
8
6
Al
2 -15 -1 -05 0 05 1 1.

-3 =20

Y

(S1LEN 7

b

LINKOPINGS : -
Il.u UNNERSITEr http://www.it.uu.se/edu/course/homepage/sml/


http://www.it.uu.se/edu/course/homepage/sml/

Regularization

"Keep (3 small unless the data really convinces us otherwise"

Least squares with Ridge regression

A~

B = argginHXB —ylz +~18l3
= (XX +11,,1)8 =Xy

~ regularization parameter

LINKOPINGS . :
II.“ UNIVERSITET http://www.it.uu.se/edu/course/homepage/sml/
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A 11
- |_inear regression with no regularization

- Ridge regression with v = 0.1
- Ridge regression with v = 1

10

A Y/

/e
: \\“‘““‘v‘ '

3 25 -2 —-15 -1 -05 0 05
€ZT

Regularization can help us to avoid overfitting!

v

LINKOPINGS . :
II." UNNERSITEr http://www.it.uu.se/edu/course/homepage/sml/


http://www.it.uu.se/edu/course/homepage/sml/

Relationship between model capacity and error

underfitting | overfitting
zone | zone

error

generalisation gap

model capacity
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II.“ UNIVERSITET



Bias

- Dataset bias — When the data used to train
machine learning models doesn’t represent the
diversity of the customer base.

« Association bias — When the data used to train a
model reinforces and multiplies a cultural bias.

« Automation bias — When automated decisions
override social and cultural considerations.

« Interaction bias — When humans tamper with Al
and create biased results.

« Confirmation bias — When oversimplified
personalization makes biased assumptions for a
group or an individual.

II u LNKOPINGS  https://medium.com/microsoft-design/how-to-recognize-exclusion-in-
O UNIVERSITET  5j_ec2d6d89f850



https://medium.com/microsoft-design/how-to-recognize-exclusion-in-ai-ec2d6d89f850

Machine learning is still brittle...

+.007 x
L mgn(VmJ(H, I, y)) esign(VwJ(H, T, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

) lan J. Goodfellow, Jonathon Shlens, Christian Szegedy. Explaining and Harnessing
II LINKOPINGS .
oW UNIVERSITET Adversarial Examples. ICLR 2015
https://arxiv.org/abs/1412.6572



https://arxiv.org/abs/1412.6572

Generative Adversarial Networks (GANS)

Realworld —— Sample |
RREIES Real
o @) e
Discriminator - ‘ - 8
w
Fake

Generator [———={ Sample

Latent random variable
QOO

I LINKOPINGS Kevin McGuinness. Deep Learning for Computer Vision: Generative models and adversarial training (UPC 2016).
I. UNIVERSITET http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
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Al-Generated Portrait
Sells for $432,500

LINKOPINGS https://www.bloomberg.com/news/articles/2018-10-25/ai-generated-
UNIVERSITET  portrait-is-sold-for-432-500-in-an-auction-first



https://www.bloomberg.com/news/articles/2018-10-25/ai-generated-portrait-is-sold-for-432-500-in-an-auction-first

Right for the Wrong Reasons [Mccoy, Pavlick, Linzen ACL 2019]

Heuristic Definition

Example

Lexical overlap Assume that a premise entails all hypothe-
ses constructed from words in the premise

The doctor was paid by the actor.

———— The doctor paid the actor.
WRONG

Subsequence Assume that a premise entails all of its
contiguous subsequences.

The doctor near the actor danced.

—— The actor danced.
WRONG

Constituent Assume that a premise entails all complete
subtrees in its parse tree.

If the artist slept, the actor ran.

——— The artist slept.
WRONG

Table 1: The heuristics targeted by the HANS dataset, along with examples of incorrect entailment predictions that

these heuristics would lead to.

II “ LINKOPINGS Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
O UNIVERSITET by R. Thomas McCoy, Ellie Pavlick, Tal Linzen https://arxiv.org/abs/1902.01007



https://arxiv.org/abs/1902.01007

Right for the Wrong Reasons [Mccoy, Pavlick, Linzen ACL 2019]

Lexical overlap Subsequence Constituent
100% -
795% - m
50% - - - 1r - - -B-4 - - - - B8 - i
)
aﬁ 25% - o
g 0% -
S 100% - -
<L 75% - SI
50%+----——----"—{ " -----———-{ oo m e g
25% - =
0% 1 — — — L] —_— — e —_ _ m Bl |2
R S S P AP SR\
SN K O K Q' &N & K
II LINKOPINGS Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
o

UNIVERSITET by R. Thomas McCoy, Ellie Pavlick, Tal Linzen https://arxiv.org/abs/1902.01007
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The bigger system / picture

Configuration

Data Collection

Feature
Extraction

Data Machine
Verification Resource
Management
Analysis Tools
Process
Management Tools

Serving
Infrastructure

Monitoring

LINKOPINGS
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Hidden technical debtin Machine Learning Systems,
Sculley et. al. (NIPS 2015)




What is Explainability and Explainable Al?

« An explanation is “a statement or account that makes something clear”
« Explainability is

— “The ability to explain or to present in understandable terms to a

human.” Finale Doshi-Velez and Been Kim in Towards A Rigorous Science of
Interpretable Machine Learning (https://arxiv.org/abs/1702.08608)

— “When you can stop asking why” Gilpin, et al in Explaining Explanations: An
Approach to Evaluating Interpretability of Machine Learning
(https://arxiv.org/abs/1806.00069)

- Explainable Al is an “Al systems that can explain their rationale to a
human user, characterize their strengths and weaknesses, and convey an

understanding of how they will behave in the future” DARPA XAI Program
(https://www.darpa.mil/program/explainable-artificial-intelligence)

LINKOPINGS
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https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1806.00069
https://www.darpa.mil/program/explainable-artificial-intelligence

Explainable Al — The DARPA View

Today
\ Why did you do that?
Machine Decision or. Why not something else?
Training Ll L ) Learned Recommendation When do you succeed?
Data earning Function When do you fail?
Process When can | trust you?
How do | correct an error?
XAl Task
o * | understand why
New b * | understand why not
Training N Machine Explainable | Explanation g * I know when you succeed
Data Learning Model Interface [* ‘-5} * I know when you fail
Process -~ 3 * | know when to trust you
* | know why you erred
User

https://www.darpa.mil/attachments/XAIProgramUpdate.pdf

LINKOPINGS
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https://www.darpa.mil/attachments/XAIProgramUpdate.pdf

New Learning Techniques (today) Explainability
Approach (notional)
Neural Nets R A
Create a suite of : s . Graphical >O—0
machine learnin : Models ©
_ g | | Deep ble )\ 5 | »0—0
techniques that u Learning T Ensemble 20—>0
produce more BeliyefNets MeFE‘?dS s
explainable models, -  Rapderr< X 2
while maintaining a N = /O_)O
high level of learning MLN “
Degision <
performance N >
ade Explainability
Mo
‘DAl.i § Clr/::..:’l‘ﬁ 0:75” “}‘X.’i“ C; 4 M DdEI
FEEl PEEP z
g Bl e
Deep Explanation Interpretable Models Model Induction
Modified deep learning Techniques to learn more Techniques to infer an
techniques to learn structured, interpretable, causal explainable model from any
explainable features models model as a black box
II. UNKOPNCS. https://www.darpa.mil/attachments/XAlProgramUpdate.pdf


https://www.darpa.mil/attachments/XAIProgramUpdate.pdf

LIME (Local Interpretable Model-agnostic Explanations)

Perturbed Instances | P(tree frog)

0.85

F—AK
Locally weighted
’ regression

0.00001

Original Image
P(tree frog) = 0.54

0.52

Explanation

I LINKOPINGS https://www.oreilly.com/learning/introduction-to-local-
LU uhiererer interpretable-model-agnostic-explanations-lime



https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime

Safe Autonomous Systems / Al

If things can go wrong they probably will!

This implies the need for continual monitoring of
an autonomous system and its environment in a
principled, contextual, task specific manner which
can be specified by the system itself!

Reasoning over

Reasoning over
Uncertainty ’r /r /!’ Predictions =

collision: false Pr(collision) = 0.1 Pr(collision) = 0.4

Pr(collision now) = 0.0... Pr(collision soon) = 0.5

Il.u HEK/OEFI;?@II%EST Probabilistic Predictive Stream Reasoning [Tiger and Heintz TIME 2016, |JAR review]



Reinforcement Learning

LINKOPINGS
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Reinforcement Learning Basic Concept

» Reinforcement Learning is learning what to do — how to map %
situations to actions — so as to maximum a numerical reward. ,/E;vfronmenf
Reinforcement Learning: An introduction <) m'
Sutton & Barto ’”“’”"(“"r—'
. . . _ . . State GEJ
« Rather than learning from explicit training data, or discovering N
patterns in static data, reinforcement learning discovers the best Agent

option (highest reward) from trial and error.

« Inverse Reinforcement Learning

— Learn reward function by observing an expert ﬁ

— “Apprenticeship learningapprenticeship learning*

— E.g. Abbeel et al. Autonomous Helicopter Aerobatics through
Apprenticeship Learning

LINKOPINGS
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A Reinforcement Learning Problem

The environment Agent

The reinforcement function r(s,a) d |
stat rewar action
— Pure delay reward and avoidance problems

— Minimum time to goal

Environment

— Games
The value function V(s)
— Policy n: S—> A a0 ag 2
. S0 . - 51 —I_D-Sz —r>
— Value V7(s) := X,y 1, 0 1 2

Goal: Learn to choose actions that maximize

Find the optimal policy n* that
maximizes V ™(s) for all states s.

LINKOPINGS
II.“ UNIVERSITET

rg+vyry+ 72 ry + ... , where O<y<1




RL Value Function - Example

A minimum time to goal world

Value function Optimal policy Optimal value
for random function
movement

II LINKOPINGS
[ UNIVERSITET



Markov Decision Processes

Assume:
« finite set of states S, finite set of actions A
« at each discrete time agent observes state s, €S and chooses action a, €A
* then receives immediate reward r,
 and state changes to s,,
« Markov assumption: s,,, = 6(s,,a,) and r, = r(s,,a,)
— l.e.r,and s,,, depend only on current state and action

— functions 6 and r may be non-deterministic

— functions 6 and r not necessarily known to the agent

LINKOPINGS
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MDP Example

o M — - —-

- 90 q— 100 0 G
A Jo A o A A A A
ol ¥ ol ¥ ool | | |

Ll Lo —- —l-

< - 8] g 90 g 100

r(s,a) V*(s)
— G
A

An optimal policy
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The Q-Function

Optimal policy:
e 7*(s) = argmax,[r (s,a) + vV *(5(s,a))]
 Doesn't work if we don't know r and 9.

The Q-function:

* Q(s,a):=r(s,a) +yV*((s,a))
« 1*(s) = argmax,Q (s,a)

0
0 |y 100 |, @
-‘._
0
A o A Jo A
ol ¥ ol ¥ |00l
—— ——
0 0
r(s,a)
0
.‘._
81
Az 81 A
81| 90| 100 |
3] ]
i 7) NS
Q(s,a)
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The Q-Function

« Note Q and V* closely related:
V*(s) =max_,Q (s,a")

* Therefore Q can be written as:
Q (s,,a) :=r(s,,a) +yV*((s,,a)) =
r(s,,a)+ymax,Q(s,,,a")
« If Q" denote the current approximation of Q then it can be updated by:

Q(s,a) :=r+ymax,Q"(s',a")

LINKOPINGS
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Q-Learning for Deterministic Worlds

For each s, a initialize table entry Q" (s,a) := o.
Observe current state s.

Do forever:

1. Select an action a and execute it

2. Receive immediate reward r

3. Observe the new state s’
4

Update the table entry for Q" (s,a):
Q" (s,a) :=r+ymax_,Q"(s,a")
5. §:=8'

LINKOPINGS
II.“ UNIVERSITET



Q-Learning Example

R &

T2

63

100

—

+81

90 100

Q A(S1 aaright) =r+y maXa'Q A(Sz )a')
:= 0 + 0.9 max{63, 81, 100}

Initial state: §

:= 00

1

right

Next state: S2

LINKOPINGS
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Q-Learning Continued

« Exploration

— Selecting the best action

— Probabilistic choice
« Improving convergence

— Update sequences

— Remember old state-action transitions and their immediate reward
« Non-deterministic MDPs

« Temporal Difference Learning

LINKOPINGS
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Reinforcement Learning — Neural Networks as Function Approximators

« To tackle a high-dimensional state space or continous states we can
use a neural network as function approximator

* Lunar Lander experiment
— 8 continous/discrete states
« XY-Pos, XY-Vel, Rot, Rot-rate, Leg1/Leg2 ground contact
— 4 discrete actions
 Left thrust
« Right thrust
« Main engine thrust
- NOP

— Rewards / \
* Move from top to bottom of the screen (+ ~100-140) Experience ] State/Action/Reward /S
« Land between the posts (+100) Memory

— <
* Putlegs on ground (+10 per leg) W Experience OBSERVE Al Gym
—_ Penalties ? batch Sampled, stochastic policy e

« Using main engine thrust (-0.3 per frame)
* Crashing (-100)
* Solved using Stochastic Policy Gradients \

LINKOPINGS
II.“ UNIVERSITET

Tensorflow
Neural Network & Optimizer

)




Reinforcement Learning Neural Networks as Function Approximators

LINKOPINGS
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Reinforcement Learning Basic Concepts

» Value-Based:
— Learn value function
— Implicit policy (e.g. greedy selection)

Model-Free
— Example: Deep Q Networks (DQN)
* POhCy-Based: . Value Function Ac_tc?r Policy
— No value function it
— Learn explicit (stochastic) policy  Value-Blsed Polidy-Based
— Example: Stochastic Policy Gradients | Model-Based
« Actor-Critic:

— Learn value function
— Learn policy using value function Model
— Example: Asynchronous Advantage Actor Critic (A3C)

LINKOPINGS
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OpenAl Gym Functionality

Algorithms

— Imitate computations
Atari

— Reach high scores in Atari 2600 games
Box2D

— Continuous/Discrete control tasks in Box2D
simulator

Classic Control
— Control theory problems from classic RL litterature
MudJoCo
— Continuous control tasks
Robotics

— Simulated goal-based tasks for fetch and shadow
hand robots

Toy text
— Simple text environments

Generation 8

LINKOPINGS
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LVC Simulation for Improved Training Efficiency

This project will use agent-based simulation

to address the growing need for efficient and  lveslueTeam

effective pilot training solutions for fighter N | o e

aircraft, in an LVC context: T L NS
— Lower costs ‘ '

JRrat Live Red Team
Synthetic Aircraft 4 »

— Improve availability Datalink&
. . . o e Voice COM
— Realize more complex scenarios to improve training value

We will develop machine learning
techniques that allow agents to learn in

complex environments:
— Mixed cooperative and competitive multi-agent scenarios
— Multiple conflicting objectives
— Partial observability
— Sparse rewards

Constructive Simulations

Virtual Red A/C Sim Virtual Blue A/C Sim -
e A6 ...
i

Gateway

Simulation Network

LINKOPINGS
II.“ UNIVERSITET
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LVC Simulation for Improved Training Efficiency

 Similar challenges as for real-time strategy games AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
(e.g. Dota and StarCraft): o
— Long time horizons for decision making:

« Dota ~20000 moves per game (45 min), Go
~150 moves per game, chess ~40 moves per
game

— Partially observed state, e.g. sensor limitations
and EW

— Complex observation and action spaces

« As aresult, exploration takes longer time:

— E.g. training of OpenAl Five: 128,000 CPU cores
for simulation rollouts and 256 GPUs for .r 2013 2014 2015 2016 2017 2018 2019
training of neural network model (~180 years of e
game play experience per day)

LINKOPINGS
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Petaflop/s-day (Training)




=

Multi-Objective Reinforcement Learning (MORL)
P

=

« Many real-world tasks may present an agent with
multiple, possibly conflicting objectives:

— Time
— Safety
— Resource consumption

« Multi-Objective Reinforcement Learning allows an -
agent to learn how to prioritize among objectives at
runtime

« Possible to create diverse populations of agents, or
adapt agents to time-varying user needs, e.g.
difficulty level or training session contents

2 8 & 8 8 §

« Training goals can also be considered by agents

I LINKOPINGS J. Kallstrom and F.Heintz, Tunable Dynamics in Agent-Based Simulation using Multi-Objective
I.“ UNIVERSITET Reinforcement Learning, AAMAS Adaptive and Learning Agents Workshop 2019.




Conclusions
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Algorithmic, Knowledge-Based and Learning-Based Al

Knowledge added Training data added
by domain experts by domain experts

Al-program
written by

programmers

Algorithmic Knowledge-based Learning-based
(Pattern-based)

LINKOPINGS
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Algorithms vs Machine Learning

)

72}

Q

)

g Machine learning

=

IS " 4

=

o,

E &

Q

@

Algorithms

Unstructuredness
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Human and Computational Thinking

Figure 1: A Comparison of System 1 and System 2 Thinking

System 1
“Fast”

DEFINING CHARACTERISTICS
Unconscious
Effortless
Automatic

WITHOUT self-awareness or control
“What you see is all there is.”

ROLE

Assesses the situation
Delivers updates

System 2
“Slow”

DEFINING CHARACTERISTICS
Deliberate and conscious
Effortful
Controlled mental process

WITH self-awareness or control
Logical and skeptical

ROLE

Seeks new/missing information
Makes decisions

TH{NKING,
FASTwSLOW
P —
DANIEL
KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS
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I

Pure Logic Pure Learning

« Slow thinking: deliberative, cognitive,
model-based, extrapolation
 Amazing achievements until this day

* “Pure logic iIs brittle”
noise, uncertainty, incomplete knowledge, ...

II.“ LNKOPINGS https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf



https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf

N — 3

Pure Logic Pure Learning

» Fast thinking: instinctive, perceptive,
model-free, interpolation
* Amazing achievements recently

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

II.“ LNKOPINGS https://web.cs.ucla.edu/~guyvdb/slides/ComputersAndThought.pdf
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The Way Forward

Data Explanations
\
/

Causal Models

Combining reasoning

and learning \

Knowledge/
Assumptions

Predictions

II LINKOPINGS
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Errors in diagnosing cancer in
lymph node cells

Al only Human only Al + Human

® @<L

“Weak human + machine + superior process was greater than a strong computer
and, remarkably, greater than a strong human + machine with inferior process.”

Garry Kasparov

LINKOPINGS
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Basera medicinska beslut pa all tillganglig information?
Beslutsstod behovs!

ik, transkriptomik, >_V5X5mde

olomik m.m. gap!

Genomik, epigeno

Analys av utandad luft

@kad bildanvindning (hudfoto, digital
patologi/cytologi m.m.)

Transkutan matning av glukos mm
Kontinuerlig position & aktivitet
Kontinuerliga vitalparametrar
Icke-invasiva matningar/tester

Grans for oassisterad mansklig kognitionsformaga

Tillganglig beslutsgrundande information

Radiologi Radiologi

EKG EKG

Labb Labb

Mediciner Mediciner
Overvakning/observation Overvakning/observation Overvakning/observation
Likarundersoékning Lakarundersokning Liakarundersoékning
Anamnes Anamnes Anamnes .

Datid < » Framtid

) lllustration gjord av Erik Sundvall, Region Ostergdtland & LiU. Delvis baserad pa: Evidence-Based Medicine and the Changing Nature of Healthcare: Workshop Summary
II u LINKOPINGS (IOM Roundtable on Evidence-Based Medicine) Mark B. McClellan, Michael McGinnis, Elizabeth G. Nabel, and LeighAnne M. Olsen, Institute of Medicine. ISBN: 0-309-
[ ) UNIVERSITET 11370-9 https://www.nap.edu/catalog/12041/evidence-based-medicine-and-the-changing-nature-of-health-care Fig 5-1. page 116



https://www.nap.edu/catalog/12041/evidence-based-medicine-and-the-changing-nature-of-health-care

Computational Thinking

« Datalogiskt tankande
* A problem solving process to
describe, analyze, and solve s N
problems such that computers can O []
assist using techniques from
computer science:
— Give step-by-step instructions —
— Decompose problems into smaller parts :::
— Find patterns -
Aigorithms

— Create abstractions
— Design algorithms

LINKOPINGS
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Ethics Guidelines for Trustworthy Al — Principles

4 Ethical Principles based on fundamental rights

Respect for Prevention of Fairness Explicability
human harm
autonomy
Augment, complement Safe and secure. Equal and just Transparent, open
and empower humans Protect physical and distribution of with capabilities and
mental integrity. benefits and costs. purposes, explanations

II.“ HNK/%E'Q,%;EST https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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Al Innovation, Competence and Research in Sweden

an
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Al INNOVATION of Sweden®.
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Why is Artificial Intelligence Different

« Scale

* Speed
 Single-mindedness

* Optimization-based

« Cannot break the rules
* No needs

* No real consequences
or “skin in the game”

MACHINES HUMANS
o N 7 N

ANTICIPATION

PERCEPTION @ PROBLEM SOLVING

DECISION MAKING

MEMORY

NATURAL MACHINE
LANGUAGE LEARNING
COMPUTER DOMAIN
VISION DATA

DIALOGUE &
CONVERSATION
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Prediction is hard, especially about the future

“The energy producédiby the breaking down of the
atom Is a very poor'kind of thing. Anyone who

expects a source of power from the
transformation of theseatoms isitalking
moonshine.” — Ernest Rutherford >
September 11, 1933 September 12, 1933
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