
Hardware for Machine Learning

Mark Vesterbacka
2020-03-16

In-Memory Computation

Mark Vesterbacka, 16 March 2020 - 2

Outline
• Introduction

• Embedding in memory

• Circuits and functionality

• Published results

• Conclusion

Mark Vesterbacka, 16 March 2020 - 3

• Typical dataflow

• Hardware: multiply-and-accumulate

• Computations [1]

Inference

Algorithm Distance f []
SVM Dot product sign

TM Manhattan
distance min

k-NN Manhattan
distance

majority
vote

MF Dot product max

w1

w2

wN

d1

d2

dN

…

1/N f [] y

Mark Vesterbacka, 16 March 2020 - 4

Memory access bottleneck

• Memory accesses per MAC

– Two data reads (data and weight)
– One data write (partial sum)

• GMACs per image, examples [2]

– LeNet-5: 0.00034

– AlexNet: 0.72

– Overfeat fast: 2.8

– VGG-16: 15.5

– GoogLeNet v1: 1.43

– ResNet-50: 3.9

T

weight

sum

data

Mark Vesterbacka, 16 March 2020 - 5

Memory access cost
• Energy cost of memory access compared with MAC [3]

– Accessing a register costs ~ EMAC

– Accessing other MAC costs ~ 2EMAC

– Accessing cache costs ~ 6EMAC

– Accessing external memory costs ~ 200EMAC

Mark Vesterbacka, 16 March 2020 - 6

In-memory computing
• GMACs, Greads, Gwrites costs energy…

…can we do this cheaper?

• Inference can often be done with low precision
…we could try approximate analog computing

• Communication with memory is expensive
…let us minimize distance to memory

A solution could be analog computation inside the memory

Mark Vesterbacka, 16 March 2020 - 7

• Ohm’s law ⇒ multiplicate,
KCL ⇒ accumulate

• Vector-matrix multiplication

Analog multiplication

R1

R2

R3

V1

V2

V3

Inputs

Output

I = R1–1V1+R2–1V2+R3–1V3

0 V

R1

R4

R7

V1

V2

V3

0 V

R2

R5

R8

0 V

R3

R6

R9

0 V

I1 I2 I3

Inputs

Outputs

Mark Vesterbacka, 16 March 2020 - 8

Programmable resistors
• Memristor (memory resistor)

– Thought device for which R can be programmed with I
– Remembers R when I = 0 or I(t) = Î sin(ωt)

• Field-effect transistor (FET)
– Program VGS from memory cell
– Easiest to get linear operation with constant VGS

• Floating gate transistor
– Used in flash memory
– Program Vt by storing charge in extra gate

VGS<Vt

VGS>Vt
ID

0

VGS
ID

floating
gate

Mark Vesterbacka, 16 March 2020 - 9

Standard 6T bitcell
• A 6T memory cell can control I

– C is precharged to V0

– Vi:s are pulsed in amplitude and width
– Output is discharged to resulting Vout

• Differential output can represent ±wi

– –1 is stored in top and +1 in bottom cell

• We can obtain a linear classifier with
– ! = sign ∑()*+ ,(-(

VDD
V1

VDD
V2

Precharge to V0

Vout Vout

CC

01

0 1

w1 = –1

w2 = +1

I1

I2

Mark Vesterbacka, 16 March 2020 - 10

10T bitcell
• A 6T cell must have low Vout to not ruin the stored bit

• A 10T cell buffers Vout from the bitcell during access [4]
– Pseudo-writes from multiple bit-cells discharge are avoided
– Almost full rail swing can be used for analog computation

Vin

Vout Vout

6T
bitcell

Vwrite

Mark Vesterbacka, 16 March 2020 - 11

Floating gate transistors
• Array

– 1T per bit

• Programming [5]
– Vt is programmed

V1

V2

Precharge to V0

V3

0 V

0 V

0 V

0 V

0 V

0 V

Vout1 Vout2 Vout3Vout1 Vout2 Vout3

0 V

0 V

0 V

VGS big

ID e–

Vt increases

VDG big e–
0 V

Vt resets

Programming Erase

Mark Vesterbacka, 16 March 2020 - 12

Bitline processing
• Bitlines are connected together with switches [1]

– Compute difference or scalar product through charge sharing

• Sub-ranged read [2]
– It is difficult to obtain more than 4-bit accuracy per bitline
– Sub-ranged reads (right) can obtain double, 8-bit accuracy

Vout1

C C C

Vout2 Vout3

C C C

Vout1 Vout2 Vout3

sum/diff/sign

VH

C

VL

C
16

C
Ø1 Ø2

VH+
VL

 16

Ctune

Mark Vesterbacka, 16 March 2020 - 13

Memory access patterns
• Digital and analog arrays can be designed identically

– Standard digital array outputs bits for digital MAC
– Analog output is discharged to an n-bit analog voltage

1 0 1

n:1 n:1 n:1

Digital access

15 7 3 11 0 14 2 13 6 2 8

Analog compute

Mark Vesterbacka, 16 March 2020 - 14

R1

R4

R7

R2

R5

R8

R3

R6

R9

DAC

DAC

DAC

din1

din2

din3

dout1 dout2 dout3

ADC
/SA

ADC
/SA

ADC
/SA

Bitline processing

Interface
• Data converters are

needed for interfacing

• Input
– DACs are possibly shared

• Output
– ADCs are possibly shared
– SAs are used for decisions

Mark Vesterbacka, 16 March 2020 - 15

On-chip training for nonidealities
• Circuit variations are large

– Analog circuits may need correction

• Boosting [6]
– Boosting constructs strong classifier from

weak base classifiers
– Adaptive boosting corrects fitting errors

iteratively
– Error-adaptive classifier boosting corrects

non-ideal classifiers

SA

Array with weak
classifiers in columns

SA SA

w1 w2 w3

Boosted strong classifier

Mark Vesterbacka, 16 March 2020 - 16

Avoiding on-chip training
• Apply input on bitline instead of wordline [4]

• Use binary weights to discharge bitline fully for linearity

select

Vout1

Bitcell

0

DAC

din1

I1
Vout2

Bitcell

0

DAC

din2

I2

Bitcell

DAC

din3

Vout3 0
I3

Mark Vesterbacka, 16 March 2020 - 17

Simple DAC

• DAC with binary-weighted current sources [6]

• Bitcell replica generates proper voltage for !IDAC in bitcells

• Io is an offset that increases linearity

VDD
1I 2I 16I…Io

do d0 d1 d4…

Upsized
bitcell
replica

IDAC
VDAC

Mark Vesterbacka, 16 March 2020 - 18

Switched-capacitor DAC

• DAC/multiplier with 4-bit MSB and 4-bit LSB unit [7]

• Exponential function is obtained by charging C through R

VDD
1I

d4

1I 1I 2I

d5 d6 d7

C
16

Ø2 Ø1

1I 1I 1I2I

d0d1d2d3
Vout

C 15C
16

Mark Vesterbacka, 16 March 2020 - 19

DAC with digital-to-time converter

• DAC output is generated by combining clock pulses [4]

• A constant current IDAC charges the output VDAC

VDD
IDAC

8:1
MUX

2:1
MUX

d2..d0d5..d3

0¨
9¨
18¨
27¨
36¨
45¨
54¨
63¨

56¨

C
VDAC

Mark Vesterbacka, 16 March 2020 - 20

Sense amplifier
• Sense amplifier (SA) compares or computes sign [6]

– Design for larger voltage swing than in standard SRAM
– Can compensate for offset with extra memory rows

VDD

Vout Vout

enable

enable

sign

SA

…

0
0
1
1
1

offset
compensation

rows

computation
rows

Mark Vesterbacka, 16 March 2020 - 21

Charge-sharing ADC
• Charge-sharing based integrator with replica bitlines

– A logic block provides timing signals
– A counter counts the number of cycles it takes to equalize voltage

SA

CS
logic

Vref Vref Vref

0

switches

Mark Vesterbacka, 16 March 2020 - 22

Offset cancellation in ADC
• The charge-sharing ADC is directly affected by SA offset

– A solution is to make a double conversion
– Swapping inputs between conversions and average cancels offset

SA

CS
logic switches

swapswap swap
offset
cancel

Mark Vesterbacka, 16 March 2020 - 23

Analog programmable coprocessor
• In-memory computing coprocessor [7]

• Handles analog cache misses,
register refresh, delayed write back
to registers, multiplication

• Data conversion occurs when analog
registers are flushed to digital

• Registers use SC memory cells

• Tuning C:s compensate for PVT

Digital register file

Analog register file

DAC
array

Prefetch
buffer

ADC

Mixed-signal
function

ALU
In-memory coprocessor

MIPS-32

Mark Vesterbacka, 16 March 2020 - 24

Coprocessor interface
• The analog pipeline aligns with the digital pipeline

• GCC cross compiler inserts approximate analog computing
instructions in the back-end code generation

• Compiler tracks number of instructions since analog store

• Write-back to digital memory before error accumulates

Digital processor fetch decode D execute memory access write-back

Analog
coprocessor

DA conversion/
A register access

A execute
(MAC, exp, ReLU)

A register access/
AD conversion

delayed write-
back

Mark Vesterbacka, 16 March 2020 - 25

Custom instructions of coprocessor
• Instructions for approximate analog computation [7]

– MOVEAn Transfer vector between analog and digital registers
– LHA Load a half-word (16-bit) from memory
– SHA Store a half-word (16-bit) to memory
– LWA Load a word (32-bit) from memory
– SWA Store a word (32-bit) to memory
– EACAn Vector ! = ! + ∑%&'()*+ ! + ,%
– MACAn Vector ! = ! + ∑%&'(,%-%

Mark Vesterbacka, 16 March 2020 - 26

Results — Inference in standard SRAM
• Four inference tasks mapped on test circuit [1]

– SVM, MF, k-NN, TM

• In-memory architecture vs single-function ASIC
– achieves ≤ 1% accuracy degradation
– requires 16x fewer read accesses

• Measured energy savings over conventional architecture
– MD mode 5x
– DP mode 10x

Mark Vesterbacka, 16 March 2020 - 27

Results — Dot-product for CNNs

• SRAM-embedded convolution was investigated [4]

• Measured error rates are close to ideal digital values

• Batch normalization improves error rates with ~ 30%/layer

• Energy efficiency of published works operating on MNIST
– ~ 30x improvement over standard digital

– ~ 8x improvement over digital near-memory

– Similar efficiency as digital solution with 1-bit weights

Mark Vesterbacka, 16 March 2020 - 28

Results — Classifier in standard SRAM

• Classifier was implemented in a standard SRAM [6]

• Classification of MNIST handwritten numbers
– Linear classifier 10-bit quantization yields 96% accuracy

– Linear classifier 1-bit quantization yields 52% accuracy

– Linear classifier 1-bit optimized quantization yields 91% accuracy

– Measured data with 18 EACB iterations yields 90% accuracy

• Estimated energy of 10-way classification
– Conventional digital system: 71 nJ/classification

– Digital system with 1-bit weights: 7.9 nJ/classification

– Analog system with 1-bit weights: 0.63 nJ/classification

Mark Vesterbacka, 16 March 2020 - 29

Results — Programmable coprocessor

• An analog pipelined coprocessor was modeled [7]

• Benchmarks was evaluated (results were similar)
– FFT, k-NN, SVM, LeNet5, Google MobileNet, Quick sort

• Estimated accuracy and normalized throughput and energy
of processor configurations running LeNet-5

Configuration Accuracy Throughput Energy
Digital processor 98% 1 1

+ scalar coproc. 2.5 0.96

+ vector coproc. 97% 15 0.61

Mark Vesterbacka, 16 March 2020 - 30

Conclusion
• MAC fits embedding into a memory array well

• Accuracy of analog computing matches that of inference

• Energy efficiency can improve with an order of magnitude

• Latency and throughput improve due to the parallelism

Mark Vesterbacka, 16 March 2020 - 31

References
[1] M. Kang, S. K. Gonugondla, A. Patil and N. R. Shanbhag, "A Multi-Functional In-Memory Inference

Processor Using a Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp.
642-655, Feb. 2018.

[2] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and
Survey," in Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017.

[3] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks,” in Proc. ISCA, 2016, pp. 367–379.

[4] A. Biswas and A. P. Chandrakasan, "CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-
Product Computation for Low-Power Convolutional Neural Networks," in IEEE Journal of Solid-State
Circuits, vol. 54, no. 1, pp. 217-230, Jan. 2019.

[5] R. Han et al., "A Novel Convolution Computing Paradigm Based on NOR Flash Array With High
Computing Speed and Energy Efficiency," in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 66, no. 5, pp. 1692-1703, May 2019.

[6] J. Zhang, Z. Wang and N. Verma, "In-Memory Computation of a Machine-Learning Classifier in a
Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 915-924, April 2017.

[7] S. Chung and J. Wang, "Tightly Coupled Machine Learning Coprocessor Architecture With Analog In-
Memory Computing for Instruction-Level Acceleration," in IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 3, pp. 544-561, Sept. 2019.

Questions?

