In-Memory Computation

Hardware for Machine Learning

Mark Vesterbacka 2020-03-16

Outline

- Introduction
- Embedding in memory
- Circuits and functionality
- Published results
- Conclusion

Inference

• Typical dataflow

• Computations [1]

Algorithm	Distance	<i>f</i> []	
SVM	Dot product	sign	
ТМ	Manhattan distance	min	
<i>k</i> -NN	Manhattan distance	majority vote	
MF	Dot product	max	

• Hardware: *multiply-and-accumulate*

Memory access bottleneck

- Memory accesses per MAC
 - Two data reads (*data* and *weight*)
 - One data write (partial sum)
- GMACs per image, examples [2]
 - LeNet-5: 0.00034
 - AlexNet: 0.72
 - Overfeat fast: 2.8
 - VGG-16: 15.5
 - GoogLeNet v1: 1.43
 - ResNet-50: 3.9

Memory access cost

- Energy cost of memory access compared with MAC [3]
 - Accessing a *register* costs $\sim E_{MAC}$
 - Accessing other MAC costs ~ $2E_{MAC}$
 - Accessing cache costs ~ $6E_{MAC}$
 - Accessing external memory costs ~ 200E_{MAC}

In-memory computing

• GMACs, Greads, Gwrites costs energy...

... can we do this cheaper?

- Inference can often be done with low precision ...we could try *approximate analog computing*
- Communication with memory is expensive ...let us minimize distance to memory

A solution could be *analog computation inside the memory*

Analog multiplication

- $KCL \Rightarrow accumulate$
- Ohm's law ⇒ multiplicate,
 Vector-matrix multiplication

Programmable resistors

- Memristor (memory resistor)
 - Thought device for which R can be programmed with I
 - Remembers *R* when I = 0 or $I(t) = \hat{I} \sin(\omega t)$
- Field-effect transistor (FET)
 - Program V_{GS} from memory cell
 - Easiest to get linear operation with constant V_{GS}
- Floating gate transistor
 - Used in flash memory
 - Program V_t by storing charge in extra gate

Standard 6T bitcell

- A 6T memory cell can control /
 - -C is precharged to V_0
 - $-V_i$:s are pulsed in amplitude and width
 - Output is discharged to resulting V_{out}
- Differential output can represent $\pm w_i$
 - -1 is stored in top and +1 in bottom cell
- We can obtain a linear classifier with

 $- y = \operatorname{sign}\left(\sum_{i=1}^{N} w_i x_i\right)$

10T bitcell

- A 6T cell must have low V_{out} to not ruin the stored bit
- A 10T cell buffers V_{out} from the bitcell during access [4]
 - Pseudo-writes from multiple bit-cells discharge are avoided
 - Almost full rail swing can be used for analog computation

Floating gate transistors

Bitline processing

- Bitlines are connected together with switches [1]
 - Compute difference or scalar product through charge sharing

- Sub-ranged read [2]
 - It is difficult to obtain more than 4-bit accuracy per bitline
 - Sub-ranged reads (right) can obtain double, 8-bit accuracy

Memory access patterns

- Digital and analog arrays can be designed identically
 - Standard digital array outputs bits for digital MAC
 - Analog output is discharged to an *n*-bit analog voltage

Interface

- Data converters are needed for interfacing
- Input
 - DACs are possibly shared
- Output
 - ADCs are possibly shared
 - SAs are used for decisions

On-chip training for nonidealities

- Circuit variations are large
 - Analog circuits may need correction
- Boosting [6]
 - Boosting constructs strong classifier from weak base classifiers
 - Adaptive boosting corrects fitting errors iteratively
 - Error-adaptive classifier boosting corrects non-ideal classifiers

Boosted strong classifier

Avoiding on-chip training

• Apply input on bitline instead of wordline [4]

• Use binary weights to discharge bitline fully for linearity

Simple DAC

- DAC with binary-weighted current sources [6]
- Bitcell replica generates proper voltage for γI_{DAC} in bitcells
- I_{o} is an offset that increases linearity

Switched-capacitor DAC

- DAC/multiplier with 4-bit MSB and 4-bit LSB unit [7]
- Exponential function is obtained by charging C through R

DAC with digital-to-time converter

- DAC output is generated by combining clock pulses [4]
- A constant current I_{DAC} charges the output V_{DAC}

Sense amplifier

- Sense amplifier (SA) compares or computes sign [6]
 - Design for larger voltage swing than in standard SRAM
 - Can compensate for offset with extra memory rows

Charge-sharing ADC

- Charge-sharing based integrator with replica bitlines
 - A logic block provides timing signals
 - A counter counts the number of cycles it takes to equalize voltage

Offset cancellation in ADC

- The charge-sharing ADC is directly affected by SA offset
 - A solution is to make a double conversion
 - Swapping inputs between conversions and average cancels offset

Analog programmable coprocessor

- In-memory computing coprocessor [7]
- Handles analog cache misses, register refresh, delayed write back to registers, multiplication
- Data conversion occurs when analog registers are flushed to digital
- Registers use SC memory cells
- Tuning C:s compensate for PVT

Coprocessor interface

• The analog pipeline aligns with the digital pipeline

Digital processor	fetch	decode	D execute	memory access	write-back
Analog		DA conversion/	A execute	A register access/	delayed write-
coprocessor		A register access	(MAC, exp, ReLU)	AD conversion	back

- GCC cross compiler inserts approximate analog computing instructions in the back-end code generation
- Compiler tracks number of instructions since analog store
- Write-back to digital memory before error accumulates

Custom instructions of coprocessor

- Instructions for approximate analog computation [7]
 - MOVEAn Transfer vector between analog and digital registers
 - LHA Load a half-word (16-bit) from memory
 - SHA Store a half-word (16-bit) to memory
 - LWA Load a word (32-bit) from memory
 - SWA Store a word (32-bit) to memory
 - EACAn Vector $A = A + \sum_{i=1}^{n} exp(A + X_i)$
 - MACAn Vector $A = A + \sum_{i=1}^{n} X_i Y_i$

Results — Inference in standard SRAM

- Four inference tasks mapped on test circuit [1]
 - SVM, MF, *k*-NN, TM
- In-memory architecture vs single-function ASIC
 - achieves \leq 1% accuracy degradation
 - requires 16x fewer read accesses
- Measured energy savings over conventional architecture
 - MD mode 5x
 - DP mode 10x

Results — Dot-product for CNNs

- SRAM-embedded convolution was investigated [4]
- Measured error rates are close to ideal digital values
- Batch normalization improves error rates with ~ 30%/layer
- Energy efficiency of published works operating on MNIST
 - ~ 30x improvement over standard digital
 - ~ 8x improvement over digital near-memory
 - Similar efficiency as digital solution with 1-bit weights

Results — Classifier in standard SRAM

- Classifier was implemented in a standard SRAM [6]
- Classification of MNIST handwritten numbers
 - Linear classifier 10-bit quantization yields 96% accuracy
 - Linear classifier 1-bit quantization yields 52% accuracy
 - Linear classifier 1-bit optimized quantization yields 91% accuracy
 - Measured data with 18 EACB iterations yields 90% accuracy
- Estimated energy of 10-way classification
 - Conventional digital system: 71 nJ/classification
 - Digital system with 1-bit weights:
 - Analog system with 1-bit weights:
- 7.9 nJ/classification
- 0.63 nJ/classification

Results — Programmable coprocessor

- An analog pipelined coprocessor was modeled [7]
- Benchmarks was evaluated (results were similar)
 - FFT, k-NN, SVM, LeNet5, Google MobileNet, Quick sort
- Estimated accuracy and normalized throughput and energy of processor configurations running LeNet-5

Configuration	Accuracy	Throughput	Energy
Digital processor	98%	1	1
+ scalar coproc.		2.5	0.96
+ vector coproc.	97%	15	0.61

Conclusion

- MAC fits embedding into a memory array well
- Accuracy of analog computing matches that of inference
- Energy efficiency can improve with an order of magnitude
- Latency and throughput improve due to the parallelism

References

- M. Kang, S. K. Gonugondla, A. Patil and N. R. Shanbhag, "A Multi-Functional In-Memory Inference Processor Using a Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 642-655, Feb. 2018.
- [2] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of Deep Neural Networks: A Tutorial and Survey," in Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017.
- [3] Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks," in Proc. ISCA, 2016, pp. 367–379.
- [4] A. Biswas and A. P. Chandrakasan, "CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217-230, Jan. 2019.
- [5] R. Han et al., "A Novel Convolution Computing Paradigm Based on NOR Flash Array With High Computing Speed and Energy Efficiency," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 5, pp. 1692-1703, May 2019.
- [6] J. Zhang, Z. Wang and N. Verma, "In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 915-924, April 2017.
- [7] S. Chung and J. Wang, "Tightly Coupled Machine Learning Coprocessor Architecture With Analog In-Memory Computing for Instruction-Level Acceleration," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 544-561, Sept. 2019.

