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• Typical dataflow

• Hardware: multiply-and-accumulate

• Computations  [1]

Inference
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Memory access bottleneck

• Memory accesses per MAC

– Two data reads (data and weight)
– One data write (partial sum)

• GMACs per image, examples  [2]

– LeNet-5: 0.00034

– AlexNet: 0.72

– Overfeat fast: 2.8

– VGG-16: 15.5

– GoogLeNet v1: 1.43

– ResNet-50: 3.9

T

weight

sum

data
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Memory access cost
• Energy cost of memory access compared with MAC  [3]

– Accessing a register costs ~ EMAC

– Accessing other MAC costs ~ 2EMAC

– Accessing cache costs ~ 6EMAC

– Accessing external memory costs ~ 200EMAC
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In-memory computing
• GMACs, Greads, Gwrites costs energy…

…can we do this cheaper?

• Inference can often be done with low precision
…we could try approximate analog computing

• Communication with memory is expensive
…let us minimize distance to memory

A solution could be analog computation inside the memory
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• Ohm’s law ⇒ multiplicate,   
KCL ⇒ accumulate

• Vector-matrix multiplication

Analog multiplication
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Programmable resistors
• Memristor (memory resistor)

– Thought device for which R can be programmed with I
– Remembers R when I = 0 or I(t) = Î sin(ωt)

• Field-effect transistor (FET)
– Program VGS from memory cell
– Easiest to get linear operation with constant VGS

• Floating gate transistor
– Used in flash memory
– Program Vt by storing charge in extra gate

VGS<Vt

VGS>Vt
ID

0

VGS
ID

floating
gate
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Standard 6T bitcell
• A 6T memory cell can control I

– C is precharged to V0

– Vi:s are pulsed in amplitude and width
– Output is discharged to resulting Vout

• Differential output can represent ±wi

– –1 is stored in top and +1 in bottom cell

• We can obtain a linear classifier with
– ! = sign ∑()*+ ,(-(
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10T bitcell
• A 6T cell must have low Vout to not ruin the stored bit

• A 10T cell buffers Vout from the bitcell during access  [4]
– Pseudo-writes from multiple bit-cells discharge are avoided
– Almost full rail swing can be used for analog computation

Vin

Vout Vout

6T
bitcell

Vwrite
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Floating gate transistors
• Array

– 1T per bit

• Programming  [5]
– Vt is programmed
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Bitline processing
• Bitlines are connected together with switches  [1]

– Compute difference or scalar product through charge sharing

• Sub-ranged read  [2]
– It is difficult to obtain more than 4-bit accuracy per bitline
– Sub-ranged reads (right) can obtain double, 8-bit accuracy
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Memory access patterns
• Digital and analog arrays can be designed identically

– Standard digital array outputs bits for digital MAC
– Analog output is discharged to an n-bit analog voltage

1 0 1

n:1 n:1 n:1

Digital access

15 7 3 11 0 14 2 13 6 2 8

Analog compute
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On-chip training for nonidealities
• Circuit variations are large

– Analog circuits may need correction

• Boosting  [6]
– Boosting constructs strong classifier from

weak base classifiers
– Adaptive boosting corrects fitting errors

iteratively
– Error-adaptive classifier boosting corrects

non-ideal classifiers

SA

Array with weak
classifiers in columns

SA SA

w1 w2 w3

Boosted strong classifier
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Avoiding on-chip training
• Apply input on bitline instead of wordline [4]

• Use binary weights to discharge bitline fully for linearity
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Simple DAC

• DAC with binary-weighted current sources [6]

• Bitcell replica generates proper voltage for !IDAC in bitcells

• Io is an offset that increases linearity
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Switched-capacitor DAC

• DAC/multiplier with 4-bit MSB and 4-bit LSB unit  [7]

• Exponential function is obtained by charging C through R
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DAC with digital-to-time converter

• DAC output is generated by combining clock pulses [4]

• A constant current IDAC charges the output VDAC
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Sense amplifier
• Sense amplifier (SA) compares or computes sign  [6]

– Design for larger voltage swing than in standard SRAM
– Can compensate for offset with extra memory rows
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Charge-sharing ADC
• Charge-sharing based integrator with replica bitlines

– A logic block provides timing signals
– A counter counts the number of cycles it takes to equalize voltage

SA
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Offset cancellation in ADC
• The charge-sharing ADC is directly affected by SA offset

– A solution is to make a double conversion
– Swapping inputs between conversions and average cancels offset

SA

CS
logic switches

swapswap swap
offset
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Analog programmable coprocessor
• In-memory computing coprocessor  [7]

• Handles analog cache misses,
register refresh, delayed write back
to registers, multiplication

• Data conversion occurs when analog 
registers are flushed to digital

• Registers use SC memory cells

• Tuning C:s compensate for PVT

Digital register file

Analog register file

DAC
array

Prefetch
buffer

ADC

Mixed-signal
function

ALU
In-memory coprocessor
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Coprocessor interface
• The analog pipeline aligns with the digital pipeline

• GCC cross compiler inserts approximate analog computing 
instructions in the back-end code generation

• Compiler tracks number of instructions since analog store

• Write-back to digital memory before error accumulates

Digital processor fetch decode D execute memory access write-back

Analog 
coprocessor

DA conversion/
A register access

A execute
(MAC, exp, ReLU)

A register access/
AD conversion

delayed write-
back
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Custom instructions of coprocessor
• Instructions for approximate analog computation  [7]

– MOVEAn Transfer vector between analog and digital registers
– LHA Load a half-word (16-bit) from memory
– SHA Store a half-word (16-bit) to memory
– LWA Load a word (32-bit) from memory
– SWA Store a word (32-bit) to memory
– EACAn Vector ! = ! + ∑%&'( )*+ ! + ,%
– MACAn Vector ! = ! + ∑%&'( ,%-%
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Results — Inference in standard SRAM
• Four inference tasks mapped on test circuit   [1]

– SVM, MF, k-NN, TM

• In-memory architecture vs single-function ASIC
– achieves ≤ 1% accuracy degradation
– requires 16x fewer read accesses

• Measured energy savings over conventional architecture
– MD mode 5x
– DP mode 10x
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Results — Dot-product for CNNs

• SRAM-embedded convolution was investigated  [4]

• Measured error rates are close to ideal digital values

• Batch normalization improves error rates with ~ 30%/layer

• Energy efficiency of published works operating on MNIST
– ~ 30x improvement over standard digital

– ~ 8x improvement over digital near-memory

– Similar efficiency as digital solution with 1-bit weights
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Results — Classifier in standard SRAM

• Classifier was implemented in a standard SRAM  [6]

• Classification of MNIST handwritten numbers
– Linear classifier 10-bit quantization yields 96% accuracy

– Linear classifier 1-bit quantization yields 52% accuracy

– Linear classifier 1-bit optimized quantization yields 91% accuracy

– Measured data with 18 EACB iterations yields 90% accuracy

• Estimated energy of 10-way classification
– Conventional digital system: 71 nJ/classification

– Digital system with 1-bit weights: 7.9 nJ/classification

– Analog system with 1-bit weights: 0.63 nJ/classification
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Results — Programmable coprocessor

• An analog pipelined coprocessor was modeled  [7]

• Benchmarks was evaluated (results were similar)
– FFT, k-NN, SVM, LeNet5, Google MobileNet, Quick sort

• Estimated accuracy and normalized throughput and energy 
of processor configurations running LeNet-5

Configuration Accuracy Throughput Energy
Digital processor 98% 1 1

+ scalar coproc. 2.5 0.96

+ vector coproc. 97% 15 0.61
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Conclusion
• MAC fits embedding into a memory array well

• Accuracy of analog computing matches that of inference

• Energy efficiency can improve with an order of magnitude

• Latency and throughput improve due to the parallelism
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