
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Hardware for Machine Learning:!
!

Computations on graphics
processors!

!
Ingemar Ragnemalm!

Information Coding, ISY

1(108)

1(108)

Information Coding / Computer Graphics, ISY, LiTH

This lecture:!
!

GPU evolution and GPU architecture!
!

How to write simple CUDA programs!
!

How to port from the CPU!
!

How to optimize!
!

Alternatives: OpenCL, GLSL, Compute shaders

2(108)2(108)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. Why did the GPU evolve into a general
purpose parallel processor?!

!
2. What operations do tensor cores accelerate?!

!
3. How can you limit global memory access in

CUDA?

3(108)3(108)

Information Coding / Computer Graphics, ISY, LiTH

The GFLOPS race

4(108)4(108)

Information Coding / Computer Graphics, ISY, LiTH

GFLOPS in numbers:

! GPU !CPU!
1995: !0.001 !0.09!
2005: !40 !5.6!
2011: !2488 !91!
2015: !7000 !176!
2016: !16380 !400-700*!
2017: !110000** !4000** !

(Various sources)

* Theoretical, 16 cores!
** Claimed by NVidia, Titan V!
*** Theoretical peak performance

Gets complicated here:!
CUDA vs tensor cores

5(108)5(108)

Information Coding / Computer Graphics, ISY, LiTH

1961: !8.3 trillion!
1984: !42 million!!
1997: !42000 (CPU cluster)!
2000: !836-1300!
2007: !52!
2012: !0.73 (AMD 7970)!
2013: !0.22 (PS4)!
2015: !0.08 (Radeon R9 295)

How about economy: dollar per GFLOPS?

(Wikipedia)

6(108)6(108)

Information Coding / Computer Graphics, ISY, LiTH

But in particular: SIMD architecture

How is this possible?!
!

Area use:

7(108)7(108)

Information Coding / Computer Graphics, ISY, LiTH

SIMD!
Single instruction, multiple data!

Simplifies instruction handling. All cores get the same
instruction.!

Excellent for operations where one operation must be made on
many data elements.!

!
Is that so common? Yes!!

Data best in stored arrays.

8(108)8(108)

Information Coding / Computer Graphics, ISY, LiTH

SIMT - Single Instruction, Multiple Thread!
A variant of SIMD.!

Parallelism expressed as threads.!
A programming model, but also demands that the hardware can

handle threads very fast.!
Threads dependent - executed in a SIMD processor!!

!
So, why does SIMT fit a graphics processor so well?

9(108)9(108)

Information Coding / Computer Graphics, ISY, LiTH

Data Oriented Programming!
DOP optimizes for performance.!

Data structures selected to fit the computations,!
instead of the programmer!!

!
Optimize for the end user instead for the programmer!!

!
Popular in the game industry - why not elsewhere?

10(108)10(108)

Information Coding / Computer Graphics, ISY, LiTH

Major past and current success stories:!
!

Crypto currency!
!

Bitcoins, Litecoins and others.!
!

Deep learning!
!

Learning systems based on very large neural
networks.

11(108)11(108)

Information Coding / Computer Graphics, ISY, LiTH

Why did GPUs get so much performance?!
!

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)!

!
Graphics pipeline designed for parallelism!!

!
Hiding memory latency by parallelism!

!
Volume. 3D graphics boards central component in game

industry. Everybody wants one!!
!

New games need new impressive features. Many important
advancements started as game features.

12(108)12(108)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

13(108)13(108)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.

14(108)14(108)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.

15(108)15(108)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.!
!

Must work in floating-point!!
!

This was for light effects, HDR.

16(108)16(108)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

A look at the GPU architecture!
!

Over to the timeline, big changes:!
!

Pre-G80: Separate vertex and fragment processors.!
!

Hard-wired for graphics. Load balance problems.!
!

G80: Unified architecture. More suited for GPGPU. Higher
performance due to better load balancing.!

!
GT100: Much more double precision!

!
TU102: Tensor & RT cores!

!
(Similar track for AMD)

17(108)

17(108)

Information Coding / Computer Graphics, ISY, LiTH

7800: High-end GPU before G80
Vertex processors

Fragment
processors

Framebuffer
operations

18(108)18(108)

Information Coding / Computer Graphics, ISY, LiTH

G80

Hardware formerly
between vertex and

fragment processors

Unified
processors!

Framebuffer
operations

19(108)19(108)

Information Coding / Computer Graphics, ISY, LiTH

Unified processorsSeparate vertex and fragment
processors

G80: A question of load balance!

Vertex
problem (e.g.

complex
geometry)

Fragment
problem (e.g.

advanced
rendering)

Fragment Shader

Fragment Shader

20(108)20(108)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor hierarchy

8 top-level groups
of TPCs

SM = Streaming
Multiprocessor!

!
SM is a group of 8

SIMD cores

21(108)21(108)

Information Coding / Computer Graphics, ISY, LiTH

The vital part: The SM

SM: 8 cores!
!

but also!
!

SFU: Special functions unit!
!

Shared memory!
!

Register memory in each core!
!

Instruction handling/thread
management

22(108)22(108)

Information Coding / Computer Graphics, ISY, LiTH

2010: Fermi (GT100)

16 SMs!
!

32 cores per SM!
!
!

Important change:!
!

Much area for L2
cache!

23(108)23(108)

Information Coding / Computer Graphics, ISY, LiTH

More on Fermi!
!

4x performance for double (64-bit FP)!
!

More silicon space for cache! More like a CPU.!
!

CGPU = Computing Graphics Processing Unit!
!

=> NVidia aims for GPGPU with Fermi!

24(108)24(108)

Information Coding / Computer Graphics, ISY, LiTH

2018: Turing!
!

Big change towards specialized parts!
!

• Tensor cores!
!

• RT cores!
!

• Focus on raytracing and learning!
!

Still new - Is it a big step?

25(108)25(108)

Information Coding / Computer Graphics, ISY, LiTH

Turing vs G80!
!

G80 = unification, only one kind
of cores = better use of hardware!

!
Turing = separation, three kinds

of cores... meaning what?!
!

Contradiction! Will this last?

26(108)26(108)

Information Coding / Computer Graphics, ISY, LiTH

General purpose hardware

Special purpose hardware!
!
Questionable usability for
general purpose computations

27(108)27(108)

Information Coding / Computer Graphics, ISY, LiTH

GPU hardware now in three parts!
!

• General purpose!
• Real time ray-tracing!

• Deep learning!
!

General pupose first, then a look into the others

28(108)28(108)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Turing GPUs!
!

The latest and hottest - and the biggest change since
G80!!
!

• RT cores!
• Tensor cores!

• Cooperative groups!
• Modified thread model

29(108)

29(108)

Information Coding / Computer Graphics, ISY, LiTH

6 groups with
14 SMs in each
= 84 SMs

30(108)30(108)

Information Coding / Computer Graphics, ISY, LiTH

Multiple levels!

!

Each SM = 4 different kind of computing cores

64 FP32 cores!
64 INT32 cores!
32 FP64 cores!
8 Tensor cores!
!
in 4 groups

31(108)31(108)

Information Coding / Computer Graphics, ISY, LiTH

Same as above plus RT
core!

!

Note that all new hardware is per SM!

32(108)32(108)

Information Coding / Computer Graphics, ISY, LiTH

RT cores = Raytracing cores!
Tensor cores!

!
Special-purpose hardware in Turing GPUs

33(108)33(108)

Information Coding / Computer Graphics, ISY, LiTH

RT cores!
!

Accelerates ray-box and ray-triangle caclulations

34(108)34(108)

Information Coding / Computer Graphics, ISY, LiTH

Tensor cores!
!

Accelerates matrix multiply and accumulate

35(108)35(108)

Information Coding / Computer Graphics, ISY, LiTH

4x4 matrix multiplication!
!

Matrix multiplication in low precision

Build bigger multiplications with 4x4 as
building block.

36(108)36(108)

Information Coding / Computer Graphics, ISY, LiTH

Low precision for faster calculation !
!

FP16 in, FP32 out

37(108)37(108)

Information Coding / Computer Graphics, ISY, LiTH

template<typename Use, int m, int n, int k, typename T, typename Layout=void> class fragment;!
 !
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);!
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t layout);!
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t layout);!
void fill_fragment(fragment<...> &a, const T& v);!
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const
fragment<...> &c, bool satf=false);

Using tensor cores !
!

"Inside" CUDA; New subset of CUDA API.!
!

Also used by several libraries.

38(108)38(108)

Information Coding / Computer Graphics, ISY, LiTH

Cooperative groups !
!

Cooperative groups allow synchronization over parts
of a block/SM instead of the whole block.!

!
Gives more flexible synchronization, allows more

threads to keep working while others wait for a
synchronization.

39(108)39(108)

Information Coding / Computer Graphics, ISY, LiTH

Modified thread model !
!

Thread model: Warps are controlled by an active
mask to map out threads depending on branching

("if" statements)!
!

Turing modifies this by interleaving branch
execution.

40(108)40(108)

Information Coding / Computer Graphics, ISY, LiTH

Old model: One branch is executed at a time

New model: Branch execution is interleaved

41(108)41(108)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions on Turing:!
!

• Extremely high parallelism: 84 SMs with multiple
warp capability and numerous cores in each!

!
• Tensor cores for accelerating matrix mult +

accumulate for deep learning!
!

• RT cores!
!

• Additional new flexibility

42(108)42(108)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Related parallelization efforts!
!

IBM Cell (next generation canceled!)!
!

Intel Larabee (”put on ice” - dead)!
!

GPUs are the clear winners so far!

43(108)

43(108)

Information Coding / Computer Graphics, ISY, LiTH

But never count out Intel...!
!

how about the more recent Xeon Phi?!
(Follow-up on Larabee)

44(108)44(108)

Information Coding / Computer Graphics, ISY, LiTH

How does it compare?

45(108)45(108)

Information Coding / Computer Graphics, ISY, LiTH

Important!

The GPU still wins! (Even over other SIMD!)

Test: Does it compete?

46(108)46(108)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion comparison!
SB - Xeon Phi - GPU!

!
Even the CPU performed pretty well.!

All use SIMD (at least partially) for best performance!!
All require you to code in parallel!

47(108)47(108)

Information Coding / Computer Graphics, ISY, LiTH

Dedicated hardware for deep learning!
!

There is work on ASICs for deep learning. Most
notable: Tensor processing unit (TPU)?
Proprietary, in-house chips. Inflexible.!

!
For flexible, programmable, general-pupose

applications, the GPU holds the lead.

48(108)48(108)

Information Coding / Computer Graphics, ISY, LiTH

And this brought us to:!
!

GPGPU/GPU Computing!
!

General Purpose computation on Graphics Processing Units!
!

Mark Harris, 2002!
!

Perform demanding calculations on the GPU instead of the CPU!!
!

At first, appeared to be a wild idea, but is now a very serious
technology! Results were highly varied in the early years, but the

GPU advantage has grown bigger and bigger.

49(108)49(108)

Information Coding / Computer Graphics, ISY, LiTH

GPGPU approaches!
!

• Using fixed pipeline graphics!
!

• Shader programs!
!

• CUDA!
!

• OpenCL!
!

• Compute shaders

50(108)50(108)

Information Coding / Computer Graphics, ISY, LiTH

Fixed pipeline GPGPU!
!

Reformulate a problem to something that can be done by
standard graphics operations.!

!
Limited success 1999/2000. Not of any practical interest!!

!
Example: Jörgen Ahlberg, face tracking

51(108)51(108)

Information Coding / Computer Graphics, ISY, LiTH

Fragment (pixel) shader based GPGPU!
!

Portable! All GPUs can use shaders, no need for extra software,
run using standard software/drivers.!

!
All modern shader languages (GLSL, Cg, HLSL) are similar and

easy to program in.!
!

Requires a re-mapping of data to textures.!
!

Very good results already in 2005: 8x speedups overall reported!

52(108)52(108)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-based GPGPU!
!

Only works on NVidia hardware.!
!

Requires extra software - which isn’t very elegant.!
!

Nice integration of CPU and GPU code in the same program.!
!

Excellent results! 100x speedups are common - before
optimizing! Even low-end GPUs give significant boosts.

53(108)53(108)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL-based GPGPU!
!

Works on various hardware - not only GPUs.!
!

Developed by Khronos Group, pushed by Apple.!
!

Harder to get started, software looks pretty much like
programming shaders.

54(108)54(108)

Information Coding / Computer Graphics, ISY, LiTH

OpenGL Compute shaders!
!

Built into OpenGL!
!

Similar to OpenCL!
!

Good portability

Direct Compute Compute shaders!
!

Built into DirectX!
!

Similar to OpenCL!
!

MS only

55(108)55(108)

Information Coding / Computer Graphics, ISY, LiTH

Vulkan!
!

The "new OpenGL", arrived 2016.!
!

"Bleeding edge".!
!

Future main generic GPU platform for!
both graphics and computing?!

!
Same compute shaders as OpenGL.

Metal!
!

Apples "Vulkan".!
!

Apple has deprecated everything
else - including OpenCL!

!
"Metal Performance Shaders".!

!
Apple only.

56(108)56(108)

Information Coding / Computer Graphics, ISY, LiTH

Use the source, Luke!!
!

Four trivial examples:!
!

Hello World! for CUDA!
!

Hello World! for OpenCL!
!

Hello World for GLSL!
!

Hello World for Compute Shaders

57(108)57(108)

Information Coding / Computer Graphics, ISY, LiTH

Introduction to CUDA

58(108)

58(108)

Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified
Device Architecture!

!
Developed by NVidia!

!
Only available on NVidia boards, G80 or

better GPU architecture!
!

Designed to hide the graphics heritage
and add control and flexibility

Really?

59(108)59(108)

Information Coding / Computer Graphics, ISY, LiTH

Computing model:!
!

1. Upload data to GPU!
!

2. Execute kernel!
!

3. Download result!
!

Similar to shader-based solutions and
OpenCL

60(108)60(108)

Information Coding / Computer Graphics, ISY, LiTH

Integrated source!
!

Source of host and kernel code in the same
source file!!

!
Major difference to shaders and OpenCL.!

!
Kernel code identified by special modifiers.

61(108)61(108)

Information Coding / Computer Graphics, ISY, LiTH

About CUDA!
!

Architecture and C extension!
!

Spawn a large number of threads, to be ran virtually in
parallel!

!
Just like in graphics! Fragments/computations not

quite executed in parallel.!
!

A bunch at a time - a warp.!
!

Looks much more like an ordinary C program! No more
”data stored as pixels” - just arrays!

62(108)62(108)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example!
!

A working, compilable example!

#include <stdio.h>	
	
const int N = 16; 	
const int blocksize = 16; 	
	
__global__ 	
void simple(float *c) 	
{	
	c[threadIdx.x] = threadIdx.x;	
}	
	
int main()	
{	
	int i;	
	float *c = new float[N];		
	float *cd;	
	const int size = N*sizeof(float);	
	

	cudaMalloc((void**)&cd, size);	
	dim3 dimBlock(blocksize, 1);	
	dim3 dimGrid(1, 1);	
	simple<<<dimGrid, dimBlock>>>(cd);	
	cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); 	
	cudaFree(cd);	
		
	for (i = 0; i < N; i++)	
		printf("%f ", c[i]);	
	printf("\n");	
	delete[] c;	
	printf("done\n");	
	return EXIT_SUCCESS;	
}

63(108)63(108)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example!
!

A working, compilable example!

#include <stdio.h>	
	
const int N = 16; 	
const int blocksize = 16; 	
	
__global__ 	
void simple(float *c) 	
{	
	c[threadIdx.x] = threadIdx.x;	
}	
	
int main()	
{	
	int i;	
	float *c = new float[N];		
	float *cd;	
	const int size = N*sizeof(float);	
	

	cudaMalloc((void**)&cd, size);	
	dim3 dimBlock(blocksize, 1);	
	dim3 dimGrid(1, 1);	
	simple<<<dimGrid, dimBlock>>>(cd);	
	cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); 	
	cudaFree(cd);	
		
	for (i = 0; i < N; i++)	
		printf("%f ", c[i]);	
	printf("\n");	
	delete[] c;	
	printf("done\n");	
	return EXIT_SUCCESS;	
}

Read back data

Allocate GPU memory

Kernel
Call kernel

1 block, 16 threads

thread identifier

64(108)64(108)

Information Coding / Computer Graphics, ISY, LiTH

Modifiers for code!
!

Three modifiers are provided to specify how code
should be used:!

!
__global__ executes on the GPU, invoked from the

CPU. This is the entry point of the kernel.!
!

__device__ is local to the GPU!
!

__host__ is CPU code (superfluous).
CPU

__host__ myHostFunc()

GPU

__global__ myGlobalFunc(()

__device__ myDeviceFunc(()

65(108)65(108)

Information Coding / Computer Graphics, ISY, LiTH

Memory management!
!

cudaMalloc(ptr, datasize)!
cudaFree(ptr)!

!
Similar to CPU memory management, but done by the

CPU to allocate on the GPU!
!

cudaMemCpy(dest, src, datasize, arg)!
!

arg = cudaMemcpyDeviceToHost!
or cudaMemcpyHostToDevice

66(108)66(108)

Information Coding / Computer Graphics, ISY, LiTH

Kernel execution!
!
!

simple<<<griddim, blockdim>>>(…)!
!
!

grid = blocks, block = threads!
!

Built-in variables for kernel:!
!

threadIdx and blockIdx !
blockDim and gridDim!

!
(Note that no prefix is used, like GLSL does.)

67(108)67(108)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda!
!

nvcc!
!

nvcc is nvidia’s tool, /usr/local/cuda/bin/nvcc!
!

Source files suffixed .cu!
!

Command-line for the simple example:!
!

nvcc simple.cu -o simple	
	

(Command-line options exist for libraries etc)

68(108)68(108)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda for larger applications!
!

nvcc and gcc in co-operation!
!

nvcc for .cu files!
!

gcc for .c/.cpp etc!
!

Mixing languages possible.!
!

Final linking must include C++ runtime libs.!
!

Example: One C file, one CU file

69(108)69(108)

Information Coding / Computer Graphics, ISY, LiTH

Example of multi-unit compilation!
	

Source files: cudademokernel.cu and cudademo.c!
	

nvcc cudademokernel.cu -o cudademokernel.o -c	
	

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include	
	

g++ cudademo.o cudademokernel.o -o cudademo -L/usr/local/
cuda/lib -lcuda -lcudart -lm	

!

!

Link with g++ to include C++ runtime

70(108)70(108)

Information Coding / Computer Graphics, ISY, LiTH

C/CUDA program!
code .cu

nvcc CPU binary

PTX code

Target binary!
codePTX to target

CUDA compilation
behind the scene

71(108)71(108)

Information Coding / Computer Graphics, ISY, LiTH

Executing a Cuda program!
!

Must set environment variable to find Cuda runtime.!
!

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH!
!

Then run as usual:!
!

./simple!
!
!

A problem when executing without a shell!!
!

Launch with execve()

72(108)72(108)

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA!
!

Organization and access!
!

Blocks, threads...

73(108)73(108)

Information Coding / Computer Graphics, ISY, LiTH

Warps!
!

A warp is the minimum number of data items/threads
that will actually be processed in parallel by a CUDA

capable device.!
!

We usually don’t care about warps but rather discuss
threads and blocks.

74(108)74(108)

Information Coding / Computer Graphics, ISY, LiTH

Processing organization!
!

1 warp = 32 threads!
!

1 kernel - 1 grid!
!

1 grid - many blocks!
!

1 block - 1 SM!
!

1 block - many threads!
!
!

Use many threads and many blocks! > 200 blocks
recommended.!

!
Thread # multiple of 32

75(108)75(108)

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads
and blocks!

!
Hierarcical model

Grid
Block 0,0 Block 1,0 Block 2,0 Block 3,0

Block 0,1 Block 1,1 Block 2,1 Block 3,1

Block n,n
Thread 0,0 Thread 1,0 Thread 2,0

Thread 0,1 Thread 1,1 Thread 2,1

Thread 3,0

Thread 3,1

Thread 0,2 Thread 1,2 Thread 2,2

Thread 0,3 Thread 1,3 Thread 2,3

Thread 3,2

Thread 3,3gridDim.x * gridDim.y blocks

BlockDim.x * blockDim.y threads

76(108)76(108)

Information Coding / Computer Graphics, ISY, LiTH

Indexing data with thread/block IDs!
!

Calculate index by blockIdx, blockDim, threadIdx!
!

Another simple example, calculate square of every
element, device part:

// Kernel that executes on the CUDA device	
__global__ void square_array(float *a, int N)	
{	
	int idx = blockIdx.x * blockDim.x + threadIdx.x;	
	if (idx<N) a[idx] = a[idx] * a[idx];	
}	

77(108)77(108)

Information Coding / Computer Graphics, ISY, LiTH

// main routine that executes on the host	
int main(int argc, char *argv[])	
{	
	float *a_h, *a_d;	// Pointer to host and device arrays	
	const int N = 10;	// Number of elements in arrays	
	size_t size = N * sizeof(float);	
	a_h = (float *)malloc(size);	
	cudaMalloc((void **) &a_d, size); // Allocate array on device	
// Initialize host array and copy it to CUDA device 	
	for (int i=0; i<N; i++) a_h[i] = (float)i; 	
	cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);	
// Do calculation on device: 	
	int block_size = 4; 	
	int n_blocks = N/block_size + (N%block_size == 0 ? 0:1); 	
	square_array <<< n_blocks, block_size >>> (a_d, N); 	
// Retrieve result from device and store it in host array 	
	cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);	
// Print results and cleanup	
	for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]); 	
	free(a_h); cudaFree(a_d); 	
}

Host part of square example!
!

Set block size and grid size

78(108)78(108)

Information Coding / Computer Graphics, ISY, LiTH

Porting to CUDA:!
Mandelbrot example!

Porting a big computation to the GPU!
• Bigger problem, addressing calculation must be 2D!

• Simple OpenGL output

79(108)79(108)

Information Coding / Computer Graphics, ISY, LiTH

CPU version, for loops

void computeFractal(unsigned char *ptr)!
{!
 // map from x, y to pixel position!
 for (int x = 0; x < gImageWidth; x++)!
! for (int y = 0; y < gImageHeight; y++)!
! {!
!! int offset = x + y * gImageWidth;!
!
!! // now calculate the value at that position!
!! int fractalValue = mandelbrot(x, y);!
!! !
!! // Colorize it!
!! int red = 255 * fractalValue/maxiter;!
!! if (red > 255) red = 255 - red;!
!! int green = 255 * fractalValue*4/maxiter;!
!! if (green > 255) green = 255 - green;!
!! int blue = 255 * fractalValue*20/maxiter;!
!! if (blue > 255) blue = 255 - blue;!
!! !
!! ptr[offset*4 + 0] = red;!
!! ptr[offset*4 + 1] = green;!
!! ptr[offset*4 + 2] = blue;!
!! !
!! ptr[offset*4 + 3] = 255;!
 !}!
}

80(108)80(108)

Information Coding / Computer Graphics, ISY, LiTH

CPU version, multi-threaded?!
!

• Maybe 8 or 16 threads!
!

• Load balancing critical, the work must be distributed
among the threads. Non-trivial problem!!

!
Speedup about 4 times.

81(108)81(108)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void computeFractal(unsigned char *ptr, float scale, float offsetx, float offsety, int imageWidth, int imageHeight, int maxiter)!
{!
 // map from blockIdx to pixel position!
 int x = blockIdx.x * blockDim.x + threadIdx.x;!
 int y = blockIdx.y * blockDim.y + threadIdx.y;!
 int offset = x + y * gridDim.x * blockDim.x;!
!
!! // now calculate the value at that position!
!! MYFLOAT jx = scale * (MYFLOAT)(imageWidth/2 - x + offsetx/scale)/(imageWidth/2);!
!! MYFLOAT jy = scale * (MYFLOAT)(imageHeight/2 - y + offsety/scale)/(imageWidth/2);!
!! int fractalValue = mandelbrot(jx, jy, maxiter);!
!! !
!! // Colorize it!
!! int red = 255 * fractalValue/maxiter;!
!! if (red > 255) red = 255 - red;!
!! int green = 255 * fractalValue*4/maxiter;!
!! if (green > 255) green = 255 - green;!
!! int blue = 255 * fractalValue*20/maxiter;!
!! if (blue > 255) blue = 255 - blue;!
!! !
!! ptr[offset*4 + 0] = red;!
!! ptr[offset*4 + 1] = green;!
!! ptr[offset*4 + 2] = blue;!
!! !
!! ptr[offset*4 + 3] = 255;!
}

GPU version!
!

• Replace for loops by threads!
!

• One thread per pixel!

82(108)82(108)

Information Coding / Computer Graphics, ISY, LiTH

Mandelbrot conclusions!
!

Many blocks, many treads in each block. Make sure
everything is in use.!

!
Index by thread and block.!

!
Exceptional speedup - trivially parallellizable problem!!

!
Load balancing? No problem. Why?

83(108)83(108)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion about indexing!
!

Every thread does its own calculation for indexing
memory!!

!
blockIdx, blockDim, threadIdx!

!
1, 2 or 3 dimensions!

!
Usually 2 dimensions

84(108)84(108)

Information Coding / Computer Graphics, ISY, LiTH

Let us talk about optimizations...!
!

For most problems, the threads are not independent
and need to access much data!

85(108)85(108)

Information Coding / Computer Graphics, ISY, LiTH

Memory access!
!

Vital for performance!!
!

Memory types!
!

Coalescing!
!

Example of using shared memory

86(108)86(108)

Information Coding / Computer Graphics, ISY, LiTH

Memory types!
!

Global!
!

Shared!
!

Constant (read only)!
!

Texture cache (read only)!
!

Local!
!

Registers!
!

Care about these when optimizing - not to begin with

87(108)87(108)

Information Coding / Computer Graphics, ISY, LiTH

Global memory !
!

400-600 cycles latency!!
!

Shared memory fast temporary storage!
!

Coalesce memory access!!
!

Continuous!
Aligned on power of 2 boundary!

Addressing follows thread numbering!
!

Use shared memory for reorganizing data for
coalescing!

88(108)88(108)

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce
number of global memory accesses!

!
Read blocks of data to shared memory!

!
Process!

!
Write back as needed!

!
Shared memory as ”manual cache”!

!
Example: Matrix multiplication

89(108)89(108)

Information Coding / Computer Graphics, ISY, LiTH

To multiply two N*N matrices, every item will have to be accessed N times!!
!
Naive implementation: 2N3 global memory accesses!!

Matrix multiplication

90(108)90(108)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication on CPU	

	

Simple triple ”for” loop
void MatrixMultCPU(float *a, float *b, float *c, int theSize)	
{	
	int sum, i, j, k;	
	
	// For every destination element	
	for(i = 0; i < theSize; i++)	
		for(j = 0; j < theSize; j++)	
		{	
			sum = 0;	
			// Sum along a row in a and a column in b	
			for(k = 0; k < theSize; k++)	
				sum = sum + (a[i*theSize + k]*b[k*theSize + j]);	
			c[i*theSize + j] = sum;	
		}	
}

91(108)91(108)

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version!
!

Replace outer loops by thread indices

__global__ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)	
{	
	int sum, i, j, k;	
		
	i = blockIdx.x * blockDim.x + threadIdx.x;	
	j = blockIdx.y * blockDim.y + threadIdx.y;	
	
	// For every destination element	
	sum = 0;	
	// Sum along a row in a and a column in b	
	for(k = 0; k < theSize; k++)	
		sum = sum + (a[i*theSize + k]*b[k*theSize + j]);	
	c[i*theSize + j] = sum;	
}

92(108)92(108)

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient!
!

Every thread makes 2N global memory
accesses!!

!
Can be significantly reduced using shared

memory

93(108)93(108)

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU version!
!

Data split into one output patch per block.!
!

Every element takes part in all the blocks in the same
row for A, column for B!

!
For every such block!

!
!Every thread reads one element to shared memory!

!!
!Then loop over the appropriate row and column!

!for the block

94(108)94(108)

Information Coding / Computer Graphics, ISY, LiTH

Let each block handle a part of the output (green right).!
!
Green areas middle and left contibute to output.!
!
Load the contributing areas into shared memory.

Contributing areas for patch

95(108)95(108)

Information Coding / Computer Graphics, ISY, LiTH

Example: 16 blocks

96(108)96(108)

Information Coding / Computer Graphics, ISY, LiTH

97(108)97(108)

Information Coding / Computer Graphics, ISY, LiTH

Destination!
element for!
thread

C A B

Destination!
patch for thread All patches on the same!

row in A are needed to!
produce the destination!
block

And all patches in!
the same column!
of C

For every patch, the thread reads one!
element matching the destination element

For every patch, we loop!
over the part of one row!
and column to perform!
that part of the computation

What one thread reads is used by!
everybody in the same row (A) or!
column (B)!

Every patch!
corresponds!
to one block,!
computing the!
output for that!
patch!

98(108)98(108)

Information Coding / Computer Graphics, ISY, LiTH

C A B

⊕
⊙
⊙
⊙
⊙

Piece by piece, patch by patch

99(108)99(108)

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU
version

__global__ void MatrixMultOptimized(float* A, float* B, float* C, int theSize)	
{	
	int i, j, k, b, ii, jj;	
		
// Global index for thread	
	i = blockIdx.x * blockDim.x + threadIdx.x;	
	j = blockIdx.y * blockDim.y + threadIdx.y;	
		
	float sum = 0.0;	
	// for all source patches	
	for (b = 0; b < gridDim.x; b++)	
	{	
		__shared__ float As[BLOCKSIZE*BLOCKSIZE];	
		__shared__ float Bs[BLOCKSIZE*BLOCKSIZE];	
			
		// Index locked to patch	
		ii = b * blockDim.x + threadIdx.x;	
		jj = b * blockDim.y + threadIdx.y;	
			
		As[threadIdx.y*blockDim.x + threadIdx.x] = A[ii*theSize + j];	
		Bs[threadIdx.y*blockDim.x + threadIdx.x] = B[i*theSize + jj];	
			
		__syncthreads(); // Synchronize to make sure all data is loaded	
			
		// Loop, perform computations in patch	
		for (k = 0; k < blockDim.x; ++k)	
			sum += As[threadIdx.y*blockDim.x + k]	
			* Bs[k*blockDim.x + threadIdx.x];	
			
		__syncthreads(); // Synch so nobody starts next pass prematurely	
	}	
		
	C[i*theSize + j] = sum;	
}

Allocate shared memory

Copy one element to!
shared memory

Loop over patches (1D)

Loop over row/column in!
patch, compute, accumulate!
result for one element

Write result to global memory

100(108)100(108)

Information Coding / Computer Graphics, ISY, LiTH

5-10 times faster? So what did I do?!
!

• Decent number of threads and blocks!
!

• Use shared memory for temporary storage!
!

• All threads read ONE item per matrix, but use many!!
!

• Synchronize!
!

• Even more for CPU - compared to single-thread CPU :)

101(108)101(108)

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:!
!

!Upload data to global GPU memory!
!

!For a number of parts, do:!
!

!!Upload partial data to shared memory!
!

!!Process partial data!
!

!!Write partial data to global memory!
!

!Download result to host

102(108)102(108)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization!
!

As soon as you do something where one part of a
computation depends on a result from another thread,

you must synchronize!!
!

__syncthreads()!
!

Typical implementation:!
!

!!!!• Read to shared memory!
!!!!• __syncthreads()!

!!!!• Process shared memory!
!!!!• __synchthreads()!

!!!!• Write result to global memory

103(108)103(108)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization!
!

Really wonderfully simple - everybody are doing
the same thing anyway!!

!
Synchronization simply means "wait until

everybody are done with this part"!
!

Deadlocks can still occur!

104(108)104(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Synchronization can only be done within a block!
No synchronization between blocks!!

!
Why is this a necessary limitation?

105(108)105(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Synchronization can only be done within a block!
No synchronization between blocks!!

!
Why is this a necessary limitation?!

!
Because all blocks are not active at the same time!

Blocks are queued until an SM is free!

106(108)106(108)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Synchronization can only be done within a block!
No synchronization between blocks!!

!
Why is this a necessary limitation?!

!
Because all blocks are not active at the same time!

Blocks are queued until an SM is free!!
!

But I must synchronize globally!!
!

Answer: Run multiple kernels! More on this later.

107(108)107(108)

Information Coding / Computer Graphics, ISY, LiTH

Summary:!
!

• Make threads and blocks to make the hardware occupied!
!

• Access data depending on thread/block number!
!

• Memory accesses are expensive!!
!

• Shared memory is fast!
!

• Make threads within a block cooperate!
!

• Synchronize

108(108)108(108)

