171

0.1 Unfolding

It is possible to transform an algorithm to be egsed over more than one
sample period. This is called unfolding and mayéeeficial as it gives a higher
degree of flexibility when implementing the algarit. It may also introduce
possibilities to apply other algorithmic transfornesg., to reduce the minimum
sample period.

Consider an algorithm where we have separatedahgugtational parts to a
block, N, and delay element(s) as shown in Fig. 0.1(a). Novthe next itera-
tion the input and output values and states cooredp to that illustrated in
Fig. 0.1(b). If we want to derive an algorithm oparg over two sample periods
we can assign one blochg, to process the even samples and one blgkio
process the odd samples. The input values for tfloek®é are shown in
Fig. 0.1(c). Now, as the algorithm process two saspbncurrently, a delay ele-
ment will increase the signal index by two eachetimherefore, we can connect
the v(2n+2) output to the/(2n) input with a delay element inbetween. The out-
put v(2n+1) is obviously the same as the inp(@n+1). The resulting unfolded
algorithm is shown in Fig. 0.1(d).

x(n) —» — ¥(n) x(nt+1) —» — y(nt1)
() N (b) N
v(n) . v(n+l) v(ntl) . v(nt2)
(c) x(2n)—» —y(2n) x(2nt1)— —y(2n+1)
No Ny
v(2n)—> —v(2n+l) v(2nt+l)—» —>v(2n+2)
(d) x(2n)— —y(2n) x(2ntl)—s —y(2n+1)
No v(2n+1) M

F [T le W

v(2n) LT v(2n+2)

Figure 0.1. (a) An algorithm represented as theprdational partd), and delay element(s).
(b) The inputs and outputs during the next iterat{oh The algorithm described
using one block for the even samples and one &othl samples. (d) The result-
ing unfolded algorithm.

Naturally, this can be generalized to other unfajdfactors and more than
one delay element [1]. What we are interested imhikh blocks should be con-
nected, and how many delay elements should be glagehe interconnection.

172

From Fig. 0.1(d) it can seen that one delay elementsponds to a connection
to the next block. Similarly, two delay elementsulebcorrespond to two blocks
away, etc. As the number of blocks are limited, tle&t block should be com-
puted modulo, so that the first block comes afterlast. Also, each time the last
block is passed in the modulo count a delay elensergquired. The unfolding

of an algorithm with a factdvl can be summarized as:

[l There areM computational blocks, denotéd, i =0, 1, 2, ...M-1.
(] The input and output to blod¥ arex(Mn+i) andy(Mn+i), respectively.

[l An internal state from block|; with L delay elements is connected to
blockN; with K delay elements where

j = (i+L) modM (0.2)
and
— |i+L
K LVJ (0.2)

The use of these equations are illustrated by amepile.

EXAMPLE 0.1

Consider an algorithm that have one, two, and
four delay elements at different positions of thex(n) —» — y(n)
signal flow graph. An abstracted view of the algo-
rithm is shown in Fig. 0.2. This algorithm should
be unfolded three times. N

Using (0.1) and (0.2) we can derive how to
connect the different blocks and how many delay
elements to put on each interconnection.

i=0,L=1:

=
i=0,L=2:

. oA _lo+2]| _ Figure 0.2. Extracted view of the alg
j=(0+2)mod3= 2K = L J =0 rithm used in Example 0.1

o

j = (0+1) mod 3= 1,K=L

w|

3
i=0,L=4:

j = (0+4) mod 3= 1,K:L%4J:1

i=1,L=1:

173

j = (1+1)mod 3= 2,K={17+1J:0
i=1,L=2:

j = (1+2) mod 3= c,szlg_Zle
i=1,L=4

j = (1+4) mod 3= 2,K=L17"‘4J:1
i=2,L=1:

j=(@+1)mod3= (K = ?_g_l =1
i=2,L=2:))

j=(2+2)mod3= 1,K = ZT+2 -1
i=2,L=4:))

j=(@+4mod3= (K L?_g_“J =2
Based on these computations it is straightforwarthterconnect the three computa-
tional blocks resulting in the signal flow graptosm in Fig. 0.3.

Some observations can be made based on the examgblghe equations in
(0.1) and (0.2). First, ik is an integer multiple d#1 we will always haveg =i.
Therefore, unfolding an algorithm which is expressez™ M times, results in
M separate algorithms expressed,irach independently processing evitth
sample. Second, the valuksandj are the quotient and remainder, performing
an integer divisioni(+ L)/M, i.e.,

MK+j =i+L (0.3)

Often, it is more convenient to just extract thpuhand output nodes of the
delay elements in the algorithm, instead of usihg &bstract computational
block as in Fig. 0.1. How this can be done is désctin the following example.

174

x(3n) v(3n) x(3n+l) v(3n+l) x(3nt+2) y(3nt+2)

1T
No Ny Ny
T W
T =
LT
2T«
Figure 0.3. Resulting unfolded signal flow graplexample 0.1.
EXAMPLE 0.2

Unfold a first-order allpass section based on sytrim&vo-port adaptors, as shown
in Fig. 0.4, two times. We extract the delay elemepntmarking the input and output
nodes of the delay element. This is shown in Fig.W@here a dot is used to mark the

nodesv; andvs.
V1V2

fot |
o ey

Figure 0.4. First-order WDF allpass section whieedots indicates the boundan
between the computational parts and the delay eieme

In the first step of the unfolding process, we pléite two computational blocks as
shown in Fig. 0.5. The next step is to compute titerconnection of the delay elements.

Here, we havél = 2 which gives

i=0,L=1:

j = (0+1)mod2= 1,K = {C%lj =0

i=1,L=1:

175

Vi T Ivz x(2n)] |" y(2n)
ot | No T | ¥

x(zn)J L. y(2n) V1¢ V2

.o NEJLIE

bt | Ty
x(2n+1)J L.y(znﬂ) xQnﬂ)J L'y(2n+1)

Figure 0.5. The two computational blocks Figure 0.6. First-order WDF allpass secti
obtained during unfolding of the in Fig. 0.4 unfolded two times.
first-order WDF allpass section
in Fig. 0.4.

j = (1L+1)mod2= 0,K = {%”J =1

Hence, this gives that nodg of blockNg should be directly connected to nogeof
block N;. Furthermore, node; of blockN,; should be connected to nodgof block Ny

using one delay element.
The resulting algorithm is shown in Fig. 0.6. Notmttthe top adaptor is flipped
upside down to simplify the layout of the figure.

Unfolding also finds applications when deriving gian rate realization of
multi-rate algorithms. For example, consider thdtarate algorithm in Fig. 0.6.
This algorithm consists of an expander followedtwy filters, H(z) and G(2).
H(2) can be polyphase decomposed as

H(2) = Ho(22) + 771H,(2?) (0.4)

However, this is not possible f@(z). From the Noble identities we realize that
we can moveH(z) to the lower sample rate side. This is advantagesince we
avoid processing the zeros from the expander. Nesvpbtain an algorithm as
shown in Fig. 0.7. However, the computatiorH§f) andG(z) are now performed

at different sample rates. Instead we would likedwe a realization d&(2) such
that two consecutive samples are processed comtiytree., we would like to
unfold G(2) with a factor of two. The resulting single-ratgaithm is shown in
Fig. 0.8.

Note that the unfolding dB(z) does not directly change the computational prop-
erties. However, as all operations are performédeasame sample rate, mapping

176

', v(m)

x(n)—» H(z) Giz) —>y(m)

Figure 0.6. A simple multi-rate algorithm.

Hy2) v(2n)

x(m)— v(2nt) G’ Ge) [—wm)
e

Figure 0.7. The multi-rate algorithm in Fig. 0.6eafapplying the Noble identity td(z).

P NN R Y
X(l’l)_" unfolded
) v(2n+1) | afactor 2 Y2nt)

Figure 0.8. Single-rate realization of the algaritim Fig. 0.6.

to hardware is simpler.

0.2 References

[1] K.K. Parhi, "A Systematic Approach for Design Dfgit-Serial Signal Processing
Architectures,"IEEE Trans. on Circuits and Systems, Vol. 38, No. 4, April 1991,
pp. 358-375.

