
171

0.1 Unfolding
It is possible to transform an algorithm to be expressed over more than one

sample period. This is called unfolding and may be beneficial as it gives a higher
degree of flexibility when implementing the algorithm. It may also introduce
possibilities to apply other algorithmic transforms, e.g., to reduce the minimum
sample period.

Consider an algorithm where we have separated the computational parts to a
block, N, and delay element(s) as shown in Fig. 0.1(a). Now, in the next itera-
tion the input and output values and states corresponds to that illustrated in
Fig. 0.1(b). If we want to derive an algorithm operating over two sample periods
we can assign one block, N0, to process the even samples and one block, N1, to
process the odd samples. The input values for the blocks are shown in
Fig. 0.1(c). Now, as the algorithm process two samples concurrently, a delay ele-
ment will increase the signal index by two each time. Therefore, we can connect
the v(2n+2) output to the v(2n) input with a delay element inbetween. The out-
put v(2n+1) is obviously the same as the input v(2n+1). The resulting unfolded
algorithm is shown in Fig. 0.1(d).

Naturally, this can be generalized to other unfolding factors and more than
one delay element [1]. What we are interested in is which blocks should be con-
nected, and how many delay elements should be placed on the interconnection.

Figure 0.1. (a) An algorithm represented as the computational parts, N, and delay element(s). 
(b) The inputs and outputs during the next iteration. (c) The algorithm described 
using one block for the even samples and one for the odd samples. (d) The result-
ing unfolded algorithm.
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From Fig. 0.1(d) it can seen that one delay element corresponds to a connection
to the next block. Similarly, two delay elements would correspond to two blocks
away, etc. As the number of blocks are limited, the next block should be com-
puted modulo, so that the first block comes after the last. Also, each time the last
block is passed in the modulo count a delay element is required. The unfolding
of an algorithm with a factor M can be summarized as:

❑ There are M computational blocks, denoted Ni, i = 0, 1, 2, ..., M–1.

❑ The input and output to block Ni are x(Mn+i) and y(Mn+i), respectively.

❑ An internal state from block Ni with L delay elements is connected to
block Nj with K delay elements where

(0.1)

and

(0.2)

The use of these equations are illustrated by an example.

EXAMPLE 0.1

Consider an algorithm that have one, two, and
four delay elements at different positions of the
signal flow graph. An abstracted view of the algo-
rithm is shown in Fig. 0.2. This algorithm should
be unfolded three times.

Using  (0.1) and (0.2) we can derive how to
connect the different blocks and how many delay
elements to put on each interconnection.

i = 0, L = 1:

, 

i = 0, L = 2:
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i = 0, L = 4:
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i = 1, L = 1:
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Figure 0.2. Extracted view of the algo-
rithm used in Example 0.1.
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, 

i = 1, L = 2:

, 

i = 1, L = 4:

, 

i = 2, L = 1:

, 

i = 2, L = 2:

, 

i = 2, L = 4:

, 

Based on these computations it is straightforward to interconnect the three computa-
tional blocks resulting in the signal flow graph shown in Fig. 0.3.

Some observations can be made based on the example and the equations in
(0.1) and (0.2). First, if L is an integer multiple of M we will always have j = i.
Therefore, unfolding an algorithm which is expressed in zM M times, results in
M separate algorithms expressed in z, each independently processing every Mth
sample. Second, the values K and j are the quotient and remainder, performing
an integer division (i + L)/M, i.e.,

(0.3)

Often, it is more convenient to just extract the input and output nodes of the
delay elements in the algorithm, instead of using the abstract computational
block as in Fig. 0.1. How this can be done is described in the following example.

j 1 1+( )mod 3 2= = K 1 1+
3

------------ 0= =

j 1 2+( ) mod 3 0= = K 1 2+
3

------------ 1= =

j 1 4+( ) mod 3 2= = K 1 4+
3

------------ 1= =

j 2 1+( ) mod 3 0= = K 2 1+
3

------------ 1= =

j 2 2+( ) mod 3 1= = K 2 2+
3

------------ 1= =

j 2 4+( ) mod 3 0= = K 2 4+
3

------------ 2= =

MK j+ i L+=
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EXAMPLE 0.2

Unfold a first-order allpass section based on symmetric two-port adaptors, as shown
in Fig. 0.4, two times. We extract the delay element by marking the input and output
nodes of the delay element. This is shown in Fig. 0.4 where a dot is used to mark the
nodes v1 and v2.

In the first step of the unfolding process, we place the two computational blocks as
shown in Fig. 0.5. The next step is to compute the interconnection of the delay elements.

Here, we have M = 2 which gives
i = 0, L = 1:

, 

i = 1, L = 1:

Figure 0.3. Resulting unfolded signal flow graph in Example 0.1.
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Figure 0.4. First-order WDF allpass section where the dots indicates the boundary 
between the computational parts and the delay element. 
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, 

Hence, this gives that node v1 of block N0 should be directly connected to node v2 of
block N1. Furthermore, node v1 of block N1 should be connected to node v2 of block N0
using one delay element.

The resulting algorithm is shown in Fig. 0.6. Note that the top adaptor is flipped
upside down to simplify the layout of the figure.

Unfolding also finds applications when deriving single rate realization of
multi-rate algorithms. For example, consider the multi-rate algorithm in Fig. 0.6.
This algorithm consists of an expander followed by two filters, H(z) and G(z).
H(z) can be polyphase decomposed as

(0.4)

However, this is not possible for G(z). From the Noble identities we realize that
we can move H(z) to the lower sample rate side. This is advantageous since we
avoid processing the zeros from the expander. Now, we obtain an algorithm as
shown in Fig. 0.7. However, the computation of H(z) and G(z) are now performed
at different sample rates. Instead we would like to have a realization of G(z) such
that two consecutive samples are processed concurrently, i.e., we would like to
unfold G(z) with a factor of two. The resulting single-rate algorithm is shown in
Fig. 0.8.
Note that the unfolding of G(z) does not directly change the computational prop-
erties. However, as all operations are performed at the same sample rate, mapping
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Figure 0.5. The two computational blocks 
obtained during unfolding of the 
first-order WDF allpass section 
in Fig. 0.4.

Figure 0.6. First-order WDF allpass section 
in Fig. 0.4 unfolded two times.
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to hardware is simpler.
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Figure 0.6. A simple multi-rate algorithm.
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Figure 0.7. The multi-rate algorithm in Fig. 0.6 after applying the Noble identity to H(z).
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Figure 0.8. Single-rate realization of the algorithm in Fig. 0.6.


