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5 FINITE WORD LENGTH EFFECTS

5.4 For a two-port adaptor we have:

b1 = a2 + α(a2 – a1)
b2 = a1 + α(a2 – a1)

α  = 
R1 – R2
R1 + R2

The pseudo-power entering into the adaptor is:

p = 
1
R1

 (a12 – b12) + 
1
R2

 (a22 – b22)

Simple, but long and tedious simplification, yields p = 0.

5.5 a) In safe scaling, we shall have S ≤ 1.

S = ∑
n=–∞

∞
 h(n) = a0 + a1 + a2 + a1 + a0

The new scaled values are:  a0/S, a1/S, and a2/S.

b) In L2-norm scaling , we shall have S ≤ 1, where

S = ∑
n=–∞

∞
 h(n)2 = a02 + a12 + a22+ a12 + a02

Let c = √ S. The new values are: a0/c, a1/c, and a2/c.

5.7 Rank the different scaling criteria in terms of severity. Most
severe is: Safe scaling, then L∞, and finally, L2.

5.8 a) || |F(ejωT)|2 ||p = √
p

 
1
2π ∫

0

π

 ||F(ejωT)|2|p
 dωT  =

= √
p

 
1
2π ∫

0

π

 |F(ejωT)|2p
 dωT =

= (√
2p

 
1
2π ∫

0

π

 |F(ejωT)|2p
 dωT )2 

= || F(ejωT) ||22p

b) We have:

|| F(ejωT) G(ejωT) ||p = √
p

1
2π ∫

–π

π
  F(ejωT) G(ejωT) p dωT ≤
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≤ √
p

1
2π ∫

–π

π
  F(ejωT) max

p  G(ejωT) p dωT     ≤

≤  F(ejωT) max
 √

p

1
2π ∫

–π

π
  G(ejωT) p dωT     ≤

≤ ||F(ejωT)||∞ ||G(ejωT)||p   ,   p > 1

Hence, || F(ejωT) G(ejωT) ||p ≤  ||F(ejωT)||∞  ||G(ejωT)||p   ,  p > 1

5.9 The input x(n) is assumed to be scaled. Hence, the inputs to the
multipliers with coefficients a is already scaled. Now, scale the
next critical node, i.e., the inputs to the multipliers. In this case,
the output node.

a) L2-norm scaling. Determine the impulse response, by first
determining the transfer function.

H(z) = 
a(z – 1)
z – b  = 

a
1 – b z–1 – 

a z–1

1 – b z–1 = a ∑
n=0

∞
 (b z–1)n – 

a
b ∑

n=1

∞
 (b z–1)n

or

h(n) = 
 

  0                          for n < 0
 a                          for n = 0
 a(1 – 1/b) bn      for n > 0 

We get:

S = ∑
n=–∞

∞
 h(n)2 = 

2 a2

1 + b   which shall be = 1  ⇒ a = √1 + b
2

b) L∞-norm scaling. Generally, it is difficult to find the maximal
value of the magnitude function by analytical methods.
However, in this simple case, (highpass filter) we have max for
z = –1. Hence,

|H(ejωT)| = 
2 a

1 + b  should be set to 1 ⇒ a = 
1 + b

2

5.10 According to Jackson’s lower bounds, Eqs.(5.20)–(5.21), the
variance of round-off noise at the output is bounded from below by
a measure of the sensitivity. Hence, the sensitivity is low.
Therefore, this filter can satisfy stringent requirements with
short coefficient word length.

5.11 The input is assumed to be scaled. The first critical node is after
the first adder. The impulse response to this node is:

0.4, –0.4, 0, …  ⇒  S = 0.8
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⇒ Increase the coefficients by a factor 1/S  to 0.5 and –0.5,
respectively. The impulse response to the output node is (with the
two first coefficients scaled):

(0.5 ⋅ 0.75), (0.5 (–0.75)) + (–0.5) 0.75), (–0.5)(–0.75), 0, 0 …  =

= 0.375, –0.75, 0.375, 0, 0  ⇒  S = 1.5

⇒ Decrease the coefficients by multiplying with a factor 1/S. We
obtain the new values 0.5 and –0.5, respectively. The new scaled
impulse response becomes:

(0.5 ⋅ 0.5),  (0.5 (–0.5)) + (–0.5) 0.5), (–0.5)(–0.5), 0…  =

= 0.25, –0.5, 0.25, 0…

Using L∞-norm scaling we get the transfer function to the first
critical noise node: H(z) = 0.4(1 – z–1). The maximal value of the
magnitude function is gotten for z = –1. Hence, |H|max = 0.8.
Thus, increase the first two coefficients to 0.5. The transfer
function to the output node is:

H(z) = 0.5(1 – z–1) 0.75(1 – z–1)

The maximal value of the magnitude function is occur for z = –1.
Hence, |H|max = 1.5. Thus, decrease the last two coefficients to
0.5. In this case, the two scaling criteria leads to the same
coefficients.

5.12 a) The node v(n) must be scaled since it is input (after the delay
element) to the multiplier with non-integer coefficient. Insert a
scale coefficient, c, in front of the filter. The impulse response
from the input to the node is:

hv(n) = 
 

  0     , n < 0
 
 c bn    , n ≥ 0

We get: Sv = ∑
n=0

∞
 hv(n)2 = ∑

n=0

∞
 c2 b2n = 

c2

1 – b2 = 25.2525c2

Now, let Sv = 1  ⇒  c = 
1

√25.2525
 = 0.198997

The impulse response from the input to the output is:

h(n) = a0 hv(n) + a1hv(n–1) =  

 



 0     , n < 0
 
 a0 c      , n = 0
 
 a0 c bn + a1 c bn–1    , n ≥ 1
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Sy = ∑
n=0

∞
 h(n)2 = (a0c)2 + ∑

n=1

∞
 (a0c)2 [bn – bn–1]2 =

= (a0c)2[1 + 
(b – 1)2

b2  ∑
n=1

∞
 b2n] = (a0c)2[1 + 

(b – 1)2
b2  

b 2
1 – b2)] =

= (a0c)2[1 + 
1 – b 
1 + b ] = a02 0.02

Let Sy = 1  ⇒  a0 = 
1

√0.02
 = 7.07107

b) All of the coefficients are non-integers. Hence, there are two
noise sources to each "adder". The contribution from c and b is:

σy12 = 2 σ02 ∑
n=0

∞
 hnoise(n)2 = 2 σ02 ∑

n=0

∞
  (h(n)

c )2 =

σy12 = 
2 σ02

c2  ∑
n=0

∞
 h(n)2 = 

2 σ02

c2

Since the filter is scaled.

σy12= 
2 σ02

c2  = 100.5026 
Q2

12

The contribution from σ0 and σ1 is: σy22 = 2 
Q2

12

σy2 = σy12+ σy22 = 102.5026 
Q2

12  where Q= 2–7

5.13 a) We have for a white stochastic sequence x(n) (which is a wide-
band signal): E{x(n)} = 0 and the autocorrelation function is:
r(nT) = σx2 δ(n). Hence, we have:

Sx(ejωT) = ∑
n=–∞

∞
 r(nT) e–jωnT  = σx2

and

 || Sx ||∞ = max{|Sx(ejωT)|} = σx2

b) For a narrow-band signal, for example, a sinusoidal we have: ||
Sx ||1 = A where A is the amplitude.

5.17 a) The critical overflow node that shall be scaled in direct form I
is the output node. The transfer function to this node is:

HCritical(z) = HAP(z) = 
z2 + a z + b
b z2+ a z + 1

The Lp-norm of the magnitude function is:
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|| HCritical(ejωT) ||p = √
p

1
2π ∫

–π

π
  HAP(ejωT) p dωT =

= √
p

1
2π ∫

–π

π
 1p dωT      = 1

Hence, all of the outputs are properly scaled and their scaling
is independent of the Lp-norm. Of course, this is only valid for
direct form I. For example, the direct form II structure is not
automatically scaled.

b) The ordering of the sections does not effect the signal range
since the transfer function from the input of the allpass filter
to each of the critical nodes are allpass functions. Also this
fact is a special case that is valid only for direct form I.

5.18 a) The variance of the quantization noise for System #1 is:

σ12 = Q12/12 where Q1 = 2–17

The variance of the quantization noise for System #2 is:

σ22 = Q22/12 where Q2 = 2–13

We assume that the average values are = 0. The power
spectrum after the A/D converter is:

S2 = σ22

since the noise is white. A lowpass filter with cutoff angle ωcT
is placed after the converter in order to remove noise that
should be aliased into the passband after the decimation. The
variance of the noise after the lowpass filter is:

σ32 = r(0) = 
1
2π ∫

0

2π

 S2 ej0ωT dωT = 
1
2π ∫

0

2π

 S2 dωT =

= 
2
2π ∫

0

ωcT

 σ22 dωT = 
2
2π σ22  2π fsample

2 fsample2
 = σ22 fsample

fsample2

(r(τ ) is the autocorrelation function). We assume that the noise
has zero mean. We must have:

ωcT ≥ 
2π fsample
2 fsample2
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so that the audio signal will not be attenuated by the lowpass
filter. If the quantization noise is to be less then or equal to the
noise in System #1, we must have:

12

System 1

1
2σ =

2π
ωT

Q2
12

System 2, after the A/D converter
2σ =

fsample2

2

2

2π

| H |

ω  Tc

2π
ωT

= 44.1 kHzfsampleπ

2π
ωT

Q2

= 44.1 kHzfsample

1

π

2σ3

ωT

System 2

σ32 ≤ σ12

Hence, 
Q22

12  
fsample
fsample2

 ≤ 
Q12

12  and

fsample2 ≥ 
Q22

Q12 fsample = 28 fsample;

fsample2 ≥ 256 ⋅ 44.1 kHz = 11.264 MHz

b) Decimation with a factor 1024 yields a sample frequency of:

fsample2 ≥ 1024 ⋅ 44.1 kHz = 45.1584 MHz

Decimation can be done in steps of 2 and the decimation filters
can work at the lower sample frequency. The filter orders are
almost the same for all stages. We need 10 decimation stages.
The workload for one stage is only half of that of the preceding
stage. The workload of the whole decimation filter, counted
from the output, is:
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N[20 + 21 + 22 + 23 +  … + 29] = N 29 
1 – 2–10

1 – 2–1  ≈ N 210 = 1024 N

where N is the workload of a single decimation filter working
at the lowest sample frequency.

c) System #1: 
fsample – fc 

fc
 = 

44.1 – 20
20  = 

24.1
20  = 1.205

System #2: 
fsample2 – fc

fc
 = 

11264 – 20
20  = 

11224
20  = 561.2

d) We assume that the acceptable ripple in the passband is about
0.1 dB and the required stopband attenuation is about 50 dB
in both cases.

We get:

NSystem1 =

NSystem2 =

5.19 Let E (ejωT) be the error function caused by rounding the
coefficients. We have:

E(ejωT) = e–jω(K+1)T [δh0 + 2 ∑
n=1

K
 δhn cos(ωnT)]

but |δhn | ≤ Qc/2. The deviation can be estimated in may ways,
for example, the maximal deviation or the variance of the
deviation. Here we use an estimate of the maximal deviation:

|E(ejωT)| = |e–jω(K+1)T [δh0 + 2 ∑
n=1

K
 δhn cos(ωnT)]| ≤

≤ |δh0 + 2 ∑
n=1

K
 δhn cos(ωnT)| ≤ |δh0| + 2 ∑

n=1

K
 |δhn cos(ωnT)| ≤

|E(ejωT)| ≤ |δh0| + 2 ∑
n=1

K
 |δhn|

Hence, |E(ejωT)| ≤ 
Q
2 (1 + 2 K) = 

N Q
2 (Bound #1)

Now, assume that the coefficients are randomly rounded and the
errors are considered as independent random variables that are
uniformly distributed in the interval [–Q/2, Q/2]. The variance is
Q2/12. Let e0 be the effective value of E(ejωT) in the passband:

e02 = 
1
fc

 ∫
0

fc
 |E(ejωT)|2dωT = ∑

n=0

N–1
 |δh0|2
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The variance of e02 is:

σ2 = E{ e02} = 
N Q2

12 (Bound #2)

The required coefficient word length is estimated as follows. Let
δm  be the acceptable deviation in the passband of the stopband.
Now, we must have:

|E(ejωT)| < δm  – δ0

where δ0 is the deviation before quantization of the coefficients.
Let the level of acceptance of a coefficient set that does not fit the
requirements be 5%. Hence the probability the coefficient set does
not meet the specification is (assuming a normal distribution):

P(|E(ejωT)| ≥ 2σx) = P(
|E(ejωT)|

σx
 ≥ 2) ≈ 0.05

2[1 – Φ(|E(ejωT)|
σx

)] = 0.05 ⇒
|E(ejωT)|

σx
 ≈ 2

|E(ejωT)| ≈ 2σx  ⇒ 2σx   ≈ δm  – δ0

√N Q2

12  ≈ 
δm – δ0

2   and Q ≈ (δm  – δ0) √ 3
N

The number of bits that is required to represent the coefficient
depends on the largest coefficient. Hence.

Q  = 2(1–Wc) [max{ [hn| } = 2(1–Wc)h0 ≈ 2(1–Wc) 
fs + fc
fsample

  for a

lowpass filter. Hence,

1–Wc ≈ log2{ 
fsample
fs + fc

 Q } ≈ log2{ 
fsample
fs + fc

 (δm – δ0) √ 3
N   }

Wc ≈ 1 – log2{ 
fsample
fs + fc

 (δm – δ0) √ 3
N   }

For most lowpass filter we have: 
N
3  ≤ 

fs – fc
fsample

 .

 Wc ≥ 1 – log2{ 
fsample
(fs + fc)

 √fsample
fs – fc

    (δm – δ0) }

 In practice, we may select δm  = 2 Min{ δ1, δ2 } = 2δ0
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 Wc ≥ 1 – log2{ 
fsample
(fs + fc)

 √fsample
fs – fc

  
2

δm
 }

Wc ≥ 1 – log2{ 
fsample
(fs + fc)

 √fsample
fs – fc

 }  + log2{ Min{ δ1, δ2 } }

See also: Niedringshaus W.P., Steglitz K., and Kodek D.: An
Easily Computed Performance Bound for Finite Wordlength
Direct-Form FIR Digital Filters, IEEE Trans. on Circuits and
Systems, Vol. CAS-29, No. 3, pp. 191-193, March 1982.


