11.7 a) The number is negative and the numer of 1 s in the coefficient $\alpha=(1.11011)_{2}$ is large and the usual method for optimization does therefore not yielda significant simplification. A better solution can be obtained by changing the sign of both the data and coefficient. The changing of sign of a two's-compliment number can be done by bitwise inversion and adding 1 at the LSB.

$$
y=\alpha x=(-\alpha)(-x)=(-\alpha)\left(\bar{x}+2^{-n}\right)=(-\alpha) \bar{x}+(-\alpha) 2^{-n}
$$

where \bar{x} is the bitwise inversion of x.
The optimized block diagram is shown below.

b) Validation with $\mathrm{x}=(1.001)_{2}$

x	v 1	v 2	v 3	v 4	v 5	v 6	y	
1	0	1	0	0	1	0	1	$($ LSB $)$
0	1	1	1	0	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	1	1	1	1	0	
-	0	0	0	1	1	1	0	
-	0	0	0	0	1	0	1	
-	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	$($ MSB $)$
$\mathrm{x} \cdot \alpha=(-0.875)(-0.15625)$	$=0.13671875=(0.00100011) 2=y$							

