Solutions to exam 2019-10-21 in TSTE86 Digital ICs

1.

a) Switch nets for function F :

$$
F=A B+\overline{C D}=A B+\bar{C}+\bar{D} \Rightarrow\left\{\begin{array}{l}
S_{p}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D})=\bar{A} \bar{B}+C+D \\
S_{n}=\overline{F(A, B, C, D)}=\overline{\bar{A} \bar{B}+C+D}=(\bar{A}+\bar{B}) C D
\end{array}\right.
$$

Two inverters are needed for A^{\prime} and B^{\prime}. Transistor schematic:

b) Aspect ratios are indicated directly by the transistors in the schematic above
2.

From the data it can be seen that $V_{D S}>V_{D S A T}$ for all sets \Rightarrow no operating mode is resistive. To decide between saturated and velocity saturated operating modes we need to compare $V_{G T}$ and $V_{D S A T}=0.58 \mathrm{~V}$. Inspecting the data sets we see the smallest $V_{G T}=2-V_{T}$. Hence we obtain that the MOSFET is velocity saturated for all sets if $2-V_{T}<0.58 \Rightarrow V_{T} \leq 1.42 \mathrm{~V}$, which seems likely, so let us guess that and verify it later.

$$
I_{D}=\left(k^{\prime} \frac{W}{L} V_{D S A T}\right)\left(V_{G S}-V_{T 0}-\frac{V_{D S A T}}{2}\right)\left(1+\lambda V_{D S}\right)=P_{1} \cdot P_{2} \cdot P_{3}
$$

a) Find $V_{T 0}$ e.g. by comparing the relative currents of data set 1 and 2

$$
\frac{I_{D 1}}{I_{D 2}}=\frac{P_{1}\left(2.5-V_{T 0}-\frac{0.58}{2}\right) P_{3}}{P_{1}\left(2.0-V_{T 0}-\frac{0.58}{2}\right) P_{3}}=\frac{1812}{1297} \Rightarrow V_{T 0} \approx 0.45 \mathrm{~V}
$$

b) γ is easy to solve if we solve c) first
c) We can find $2\left|\Phi_{F}\right|$ in the V_{T}-equation for data set 4 and 5 , so we start by finding V_{T} :s

Data set 2 is numerically close to 4 and 5 , so we use that in calculations of $V_{T 4}$ and $V_{T 5}$
$\frac{I_{D 2}}{I_{D 4}} \approx \frac{P_{1}\left(2-0.45-\frac{0.58}{2}\right) P_{3}}{P_{1}\left(2-V_{T 4}-\frac{0.58}{2}\right) P_{3}}=\frac{1297}{1141} \Rightarrow V_{T 4} \approx 0.60 \mathrm{~V}$
$\frac{I_{D 2}}{I_{D 5}} \approx \frac{P_{1}\left(2-0.45-\frac{0.58}{2}\right) P_{3}}{P_{1}\left(2-V_{T 5}-\frac{0.58}{2}\right) P_{3}}=\frac{1297}{1039} \Rightarrow V_{T 5} \approx 0.70 \mathrm{~V}$
Now we use the relation $V_{T}=V_{T 0}+\gamma\left(\sqrt{\left|V_{S B}-2 \Phi_{F}\right|}-\sqrt{\left|2 \Phi_{F}\right|}\right)$ to find $2\left|\Phi_{F}\right|$
Let $x=2 \phi_{F}(<0) \Rightarrow \frac{V_{T 4}-V_{T 0}}{V_{T 5}-V_{T 0}}=\frac{\sqrt{|1-x|}-\sqrt{|x|}}{\sqrt{|2-x|}-\sqrt{|x|}}=\frac{\sqrt{1-x}-\sqrt{-x}}{\sqrt{2-x}-\sqrt{-x}} \approx \frac{0.60-0.45}{0.70-0.45} \Rightarrow$
$x \approx-0.60 \mathrm{~V} \Rightarrow 2\left|\phi_{F}\right| \approx 0.60 \mathrm{~V}$
b) continued

Insert numerical values into e.g. set 4
$V_{T 4}=V_{T 0}+\gamma\left(\sqrt{\left|V_{S B 4}-2 \Phi_{F}\right|}-\sqrt{\left|2 \Phi_{F}\right|}\right) \approx 0.45+\gamma(\sqrt{|1-(-0.60)|}-\sqrt{|-0.60|}) \approx 0.60$
$\Rightarrow \gamma \approx 0.30 \mathrm{~V}^{1 / 2}$
d) To find W / L, we e.g. start by finding λ from data set 2 and 3 that are numerically close
$\frac{I_{D 2}}{I_{D 3}}=\frac{P_{1} P_{2}(1+\lambda \cdot 1.8)}{P_{1} P_{2}(1+\lambda \cdot 2.5)}=\frac{1297}{1361} \Rightarrow \lambda \approx 0.081 \mathrm{~V}^{-1}$
W / L can now be found from any of data sets, e.g. set 2
$I_{D 2} \approx 122 \cdot 10^{-6} \cdot \frac{W}{L} \cdot 0.58 \cdot\left(2-0.45-\frac{0.58}{2}\right)(1+0.081 \cdot 1.8) \approx 1297 \cdot 10^{-6} \Rightarrow \frac{W}{L} \approx 13$
a), b), c), d): check assumption on threshold voltages

$$
\left.\begin{array}{l}
V_{B S 1}=V_{B S 2}=V_{B S 3}=0 \Rightarrow V_{T 1}=V_{T 2}=V_{T 3}=V_{T 0} \approx 0.45 \mathrm{~V} \leq 1.42 \mathrm{~V} \\
V_{T 4} \approx 0.60 \mathrm{~V} \leq 1.42 \mathrm{~V} \\
V_{T 5} \approx 0.70 \mathrm{~V} \leq 1.42 \mathrm{~V}
\end{array}\right\} \Rightarrow \text { assumption is ok }
$$

a) $F(A, B)=\overline{A B} \Rightarrow S_{n}=A B$. The corresponding transistor schematic is shown in the figure to the right.
b) Capacitance C_{x} of node x indicated in the figure above is first precharged to $V_{D D}$, which is done by setting clock \emptyset low. Then the evaluation starts by setting clock \emptyset high, where a low A or low B disconnects the output from the supply, causing $F(A, B)$ to remain at approximately $V_{D D}$ due to the previous precharge. If instead both A and B are high, the output is discharged and becomes low.

c) For case $F(A, B)=F(0,1)$, capacitance C_{y} of node y indicated in the figure above is discharged. If the next evaluation is $F(A, B)=F(1,0)$, the voltage of node x should remain at $V_{D D}$, but is instead reduced due to sharing of C_{x} 's charge with C_{y}. Depending on how much the output voltage is reduced, we may need to redesign the circuit to ensure proper operation.
4.
a) Transistor schematic of a six-transistor CMOS SRAM cell

b) For example, to store $\bar{Q}=0, Q=1, W L$ is initially set to $0, \overline{B L}$ is set to 0 , and $B L$ is set to 1 . Then $W L$ is pulsed high long enough to allow the cross coupled inverter pair to change state hence storing the wanted content.
c) To read the cell content, $W L$ is initially 0 while $\overline{B L}$ and $B L$ are precharged to 1 . Then $W L$ is pulsed high long enough for the sense amplifier to detect the voltage drop on the bit-line that is pulled towards 0 by the weak transistors in the cell. Finally the sense amplifier amplifies the voltage difference to a full swing 0 and the result is output.
d) For proper read operation, the ratio between the pull-down NMOSFET and the select NMOSFET needs to be designed high enough to prevent the memory node from changing state from 0 to 1 when the cell is connected to the precharged bit-line. For proper write operation, the ratio between the pull-up PMOSFET and the select NMOSFET must be designed low enough to allow a 0 on the bit-line change the state of the corresponding memory node.
5.
a) Resistor and capacitor values

$$
\begin{aligned}
& R_{A C}=\frac{l_{A C}}{W_{\text {wire }}} R_{\text {sheet }}=\frac{3 \cdot 10^{-3}}{4 \cdot 10^{-6}} \cdot 0.25 \Omega \approx 190 \Omega \\
& R_{B C}=\frac{l_{B C}}{W_{\text {wire }}} R_{\text {sheet }}=\frac{2 \cdot 10^{-3}}{4 \cdot 10^{-6}} \cdot 0.25 \Omega \approx 120 \Omega \\
& R_{C D}=\frac{l_{C D}}{W_{\text {wire }}} R_{\text {sheet }}=\frac{4 \cdot 10^{-3}}{4 \cdot 10^{-6}} \cdot 0.25 \Omega \approx 250 \Omega \\
& R_{C E}=\frac{l_{C E}}{W_{\text {wire }}} R_{\text {sheet }}=\frac{6 \cdot 10^{-3}}{4 \cdot 10^{-6}} \cdot 0.25 \Omega \approx 380 \Omega \\
& C_{A C}=l_{A C} W_{\text {wire }} C_{\text {area }}=3 \cdot 10^{-3} \cdot 4 \cdot 10^{-6} \cdot 0.06 \cdot 10^{-3} \mathrm{~F}=720 \mathrm{fF} \\
& C_{B C}=l_{B C} W_{\text {wire }} C_{\text {area }}=2 \cdot 10^{-3} \cdot 4 \cdot 10^{-6} \cdot 0.06 \cdot 10^{-3} \mathrm{~F}=480 \mathrm{fF} \\
& C_{C D}=l_{C D} W_{\text {wire }} C_{\text {area }}=4 \cdot 10^{-3} \cdot 4 \cdot 10^{-6} \cdot 0.06 \cdot 10^{-3} \mathrm{~F}=960 \mathrm{fF} \\
& C_{C E}=l_{C E} W_{\text {wire }} C_{\text {area }}=6 \cdot 10^{-3} \cdot 4 \cdot 10^{-6} \cdot 0.06 \cdot 10^{-3} \mathrm{~F}=1440 \mathrm{fF}
\end{aligned}
$$

b) Interconnect model based on π models

Total capacitance of node C is

$$
C_{C}=\frac{C_{A C}}{2}+\frac{C_{B C}}{2}+\frac{C_{C D}}{2}+\frac{C_{C E}}{2}=1800 \mathrm{fF}
$$

c) Interconnect model based on T-models

d) Elmore delay time constant based on the π models in b)

$$
\tau_{\pi}=R_{A C}\left(\frac{C_{A C}}{2}+2 \frac{C_{B C}}{2}+2 \frac{C_{C D}}{2}+\frac{C_{C E}}{2}\right)+\left(R_{A C}+R_{C E}\right) \frac{C_{C E}}{2} \approx 0.88 \mathrm{~ns}
$$

Elmore delay time constant based on the T models in c)

$$
\tau_{\pi}=\frac{R_{A C}}{2} C_{A C}+2 \frac{R_{A C}}{2}\left(C_{B C}+C_{C D}\right)+\left(2 \frac{R_{A C}}{2}+\frac{R_{C E}}{2}\right) C_{C E} \approx 0.88 \mathrm{~ns}
$$

Since $\tau_{\pi}=\tau_{T}$, there is no difference in propagation delay for these models
The propagation delay is in both cases $t_{p}=0.38 \tau_{\pi}=0.38 \tau_{\tau} \approx 0.33 \mathrm{~ns}$
6.
a) Logic synthesis: Tools translate an HDL design description into a netlist.
b) Placement: Precise positioning of the cells is decided.
c) Routing: Interconnections are wired.
d) Tape out: All information needed for mask generation is collected into a binary file and sent to the ASIC vendor.

