## Solutions to exam 2019-08-30 in TSTE86 Digital ICs

1. 

a) Three inverters are needed if we implement $F$ directly, while two are sufficient if we first implement the inverted function $G=\bar{F}$ and then invert the output to obtain F .
Design switch net functions for $G$ :
$G=\overline{A \bar{S}+B S} \Rightarrow\left\{\begin{array}{l}S_{p}=G(\bar{A}, \bar{B}, \bar{S})=\bar{A} \bar{S}+\bar{B} \bar{S}=(A+\bar{S})(B+S)=A S+B \bar{S} \\ S_{n}=\overline{G(A, B, S)}=A \bar{S}+B S\end{array}\right.$
Two CMOS inverters are added for inverting $S$ and $G$. Complete transistor schematic:

b) Aspect ratios are indicated directly by the transistors in the schematic above.
2.
a) Find MOSFET's operating mode at $V_{M}$

$$
\begin{aligned}
V_{\min } & =\min \left(V_{G T}, V_{D S}, V_{D S A T}\right)=\min \left(V_{M}-V_{T n}, V_{M}, V_{D S A T}\right)= \\
& =\min (1.25-0.43,1.25,0.63) \mathrm{V}=0.63 \mathrm{~V} \Rightarrow \text { velocity saturated }
\end{aligned}
$$

Equate current through resistor with current through MOSFET to obtain $R_{L}$

$$
\begin{aligned}
& \frac{V_{D D}-V_{M}}{R_{L}}=k^{\prime} \frac{W}{L} V_{\text {min }}\left(V_{G T}-\frac{V_{\text {min }}}{2}\right)\left(1+\lambda V_{D S}\right) \Leftrightarrow \\
& \frac{2.5-1.25}{R_{L}}=115 \cdot 10^{-6} \cdot \frac{2.5}{0.25} \cdot 0.63 \cdot\left(1.25-0.43-\frac{0.63}{2}\right)(1+0.06 \cdot 1.25) \Rightarrow R_{L} \approx 3.2 \mathrm{k} \Omega
\end{aligned}
$$

b) MOSFET is off during charge $\Rightarrow t_{p L H}=0.69 R_{L} C_{L}$

Find $t_{p H L}$ by discharging $C_{L}$ from $V_{D D}$ to $V_{D D} / 2$
MOSFET's operating mode at $V_{\text {out }}=V_{D D}$

$$
\begin{aligned}
V_{\min } & =\min \left(V_{G T}, V_{D S}, V_{D S A T}\right)=\min \left(V_{D D}-V_{T n}, V_{D D}, V_{D S A T}\right)= \\
& =\min (2.5-0.43,2.5,0.63) \mathrm{V}=0.63 \mathrm{~V} \Rightarrow \text { velocity saturated }
\end{aligned}
$$

Derive an expression for the discharge current at $V_{D D}$

$$
\begin{aligned}
I_{D}\left(V_{D D}\right) & =k^{\prime} \frac{W}{L} V_{\min }\left(V_{D D}-V_{T n}-\frac{V_{\min }}{2}\right)\left(1+\lambda V_{D D}\right)= \\
& =115 \cdot 10^{-6} \cdot \frac{2.5}{0.25} \cdot 0.63 \cdot\left(2.5-0.43-\frac{0.63}{2}\right)(1+0.06 \cdot 2.5) \mathrm{A} \approx 1.46 \cdot 10^{-3} \mathrm{~A}
\end{aligned}
$$

MOSFET's operating mode at $V_{\text {out }}=V_{D D} / 2$

$$
\begin{aligned}
V_{\min } & =\min \left(V_{D D}-V_{T n}, \frac{V_{D D}}{2}, V_{D S A T}\right)= \\
& =\min (2.5-0.43,1.25,0.63) \mathrm{V}=0.63 \mathrm{~V} \Rightarrow \text { velocity saturated }
\end{aligned}
$$

Derive an expression for the discharge current at $V_{D D} / 2$

$$
\begin{aligned}
I_{D}\left(\frac{V_{D D}}{2}\right) & =k^{\prime} \frac{W}{L} V_{\text {min }}\left(V_{D D}-V_{T n}-\frac{V_{\text {min }}}{2}\right)\left(1+\lambda \frac{V_{D D}}{2}\right)-\frac{V_{D D} / 2}{R_{L}}= \\
& =115 \cdot 10^{-6} \cdot \frac{2.5}{0.25} \cdot 0.63 \cdot\left(2.5-0.43-\frac{0.63}{2}\right)(1+0.06 \cdot 1.25)-\frac{1.25}{R_{L}} \mathrm{~A}= \\
& \approx 1.37 \cdot 10^{-3} \mathrm{~A}-\frac{1.25}{R_{L}}
\end{aligned}
$$

Approximate $t_{p H L}$ by calculating discharge of $C_{L}$ with average current

$$
t_{p H L}=\frac{C_{L} V_{D D}-C_{L} \frac{V_{D D}}{2}}{\frac{1}{2}\left(I\left(V_{D D}\right)+I\left(\frac{V_{D D}}{2}\right)\right)}=\frac{C_{L} V_{D D}}{I\left(V_{D D}\right)+I\left(\frac{V_{D D}}{2}\right)} \approx \frac{C_{L} \cdot 2.5}{(1.46+1.37) \cdot 10^{-3}-\frac{1.25}{R_{L}}}
$$

Equate $t_{p L H}$ and $t_{p H L}$ and solve for $R_{L}$

$$
t_{p H L}=t_{p L H} \Rightarrow \frac{C_{L} \cdot 2.5}{(1.46+1.37) \cdot 10^{-3}-\frac{1.25}{R_{L}}} \approx 0.69 R_{L} C_{L} \Rightarrow R_{L} \approx 1.7 \mathrm{k} \Omega
$$

3. 

a) $R C$-chain model with $N$ identical segments

b) $\tau=\frac{R}{N} \cdot \frac{C}{N}+\frac{2 R}{N} \cdot \frac{C}{N}+\ldots \frac{N R}{N} \cdot \frac{C}{N}=\frac{R C}{N^{2}} \sum_{i=1}^{N} i=\frac{R C}{N^{2}} \cdot \frac{N(N+1)}{2}=\frac{R C}{2}\left(1+\frac{1}{N}\right)$
c) $\lim _{N \rightarrow \infty}(\tau)=\frac{R C}{2} \lim _{N \rightarrow \infty}\left(1+\frac{1}{N}\right)=\frac{R C}{2} \cdot 1=\frac{R C}{2}$
d) $t_{p}=\ln (2) \tau \approx 0.35 R C$
4. Techniques for dealing with capacitive cross talk

1. Avoid floating nodes by e.g. introducing keeper devices.
2. Separate sensitive nodes from full-swing signals.
3. Make the rise and fall time as large as possible.
4. Use differential signaling to turn cross talk into a common-mode noise.
5. Avoid large capacitance between wires, e.g. parallel wires over long distance
6. Provide a shielding wire connected to the ground or power supply between wires.
7. Reduce interwire capacitance by adding extra routing layers.
8. 

a) Positive edge-triggered master-slave D flip-flop

b) Timing diagram


Setup time $t_{s u}$ : The time before the rising edge of the clock that the input data $D$ must be valid.

Hold time $t_{h}$ : The time that the input must be held stable after the rising edge of the clock. Note that the hold time of a circuit can be negative in certain situations.
Clock-to-output delays $T_{c-q, L H}$ and $T_{c-q, H L}$ : The time after the clock edge before the output $Q$ is stable.

If the setup time or the hold time is violated the circuit might enter a metastable, undecided, state. The output will eventually reach a stable point, either high or low, but the final state will be more or less random.
6. Block schematics with critical path in red-dash (LS = least significant, MS = most significant)
a) Ripple-carry

LS in LS-1 ... MS in

b) Ripple-carry with inverter elimination (two types of FA:s with carry inversion)

c) Carry-skip

d) Carry-select


