TSTE86 Homework 4: Solution

a) Circuit model with a lumped wire model (π)

Wire resistance and capacitance calculated with respect to wire length L are
$R_{W}=\frac{L}{W} r_{W}=150 L \mathrm{~m} \Omega / \mu \mathrm{m}$
$C_{W}=c_{a} W L+2 c_{f} L=95 L \mathrm{aF} / \mu \mathrm{m}$
b) Inherent propagation delay is $t_{P, \text { inh }}=0.69 R_{S} C_{S}$

Propagation delay from the input to the end of the wire $t_{P}=0.69\left(R_{S}\left(C_{S}+C_{W}\right)+R_{W} C_{W} / 2\right)$
hence we have $2 R_{S} C_{S}=R_{S}\left(C_{S}+C_{W}\right)+R_{W} C_{W} / 2$,
which can be simplified to $R_{S} C_{S}=R_{S} C_{W}+R_{W} C_{W} / 2$
Next using the expressions for R_{W} and C_{W} we have
$R_{S} C_{S}=R_{S}\left(c_{a} W+2 c_{f}\right) L+\frac{r_{W}}{2 W}\left(c_{a} W+2 c_{f}\right) L^{2}$
which we rewrite as $7.125 \times 10^{-6} L^{2}+0.689 L-43.5=0$ (where L is expressed in $\mu \mathrm{m}$)
Hence, $L \cong \frac{43.5}{0.689} \cong 63 \mu \mathrm{~m}$
c) $t_{p}=0.69 \cdot 2 R_{S} C_{S}=60 \mathrm{ps}$
while the propagation of the wire $t_{p W}=t_{p}-0.69 R_{S}\left(C_{S}+C_{W}\right)=0.69 R_{W} C_{W} / 2$
so $t_{p W}=0.69 R_{W} C_{W} / 2=28.4 \mathrm{fs}$, that is $t_{p W}<t_{p}$ and $R_{W} \ll R_{S}$, but $C_{W}=C_{S}$
d) Propagation delay of the loaded driver is $t_{P d}=0.69 R_{S}\left(C_{S}+C_{W}\right)$
while of the wire $t_{p W}=0.69 R_{W} C_{W} / 2$
hence $R_{S}\left(C_{S}+C_{W}\right)=R_{W} C_{W} / 2$, which can be rewritten as $7.125 \cdot 10^{-6} L^{2}-0.689 L-43.5=0$
Hence $L \cong \frac{0.689+0.69}{14.25 \cdot 10^{-6}} \cong 0.097 \cdot 10^{6} \mu \mathrm{~m}=97 \mathrm{~mm}$
The circuit propagation delay is $t_{p}=0.69 R_{W} C_{W}=0.69 \cdot 150 \cdot 10^{-3} \cdot 95 \cdot 10^{-18} \cdot L^{2}$ (with L in $\mu \mathrm{m}$) $t_{p}=92.5 \cdot 10^{-9} \mathrm{~s}=92.5 \mathrm{~ns}$ while $C_{W}=8.9 \mathrm{pF}$ and $R_{W}=14.5 \mathrm{k} \Omega$, hence $C_{S} \ll C_{W}$ and $R_{W}=2 R_{S}$

