## TSTE86 Homework 2: Solution

Identify logic function from gate schematic

$$
F(A, B, C, D, E)=\overline{\overline{(\overline{A+B}}) \cdot \overline{\overline{(C+D}) \cdot E}}=\overline{(A+B)(C+D+E)}
$$

Switch nets

$$
\left\{\begin{array}{l}
S_{\mathrm{p}}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E})=\overline{(\bar{A}+\bar{B})(\bar{C}+\bar{D}+\bar{E})}=A B+C D E \\
S_{\mathrm{n}}=\overline{F(A, B, C, D, E)}=(A+B)(C+D+E)
\end{array}\right.
$$

Transistor schematic with annotated widths, $W_{\mathrm{k}}$


Select all channel lengths to minimum, $L_{\text {min }}$, and express the widths in units of $L_{\min }$. Worst case resistance occurs when a single path conducts. Design the widths of a single conduction path to be equal. Using $R \propto 1 / W$, we should design the two pull-up paths to have an equivalent resistance of $W_{\mathrm{p}}=5 L_{\text {min }}$ :

$$
\left\{\begin{array} { l } 
{ \frac { 1 } { W _ { 1 } } + \frac { 1 } { W _ { 2 } } = \frac { 1 } { 5 } \quad } \\
{ \frac { 1 } { W _ { 3 } } + \frac { 1 } { W _ { 4 } } + \frac { 1 } { W _ { 5 } } = \frac { 1 } { 5 } }
\end{array} \stackrel { \text { equal widths in path } } { \Rightarrow } \left\{\begin{array}{l}
W_{1}=W_{2}=10 \\
W_{3}=W_{4}=W_{5}=15
\end{array}\right.\right.
$$

Design the six pull-down paths to have an equivalent resistance of $W_{\mathrm{n}}=3 L_{\text {min }}$ :

$$
\left\{\begin{array} { l } 
{ W _ { 6 } ^ { - 1 } + W _ { 8 } ^ { - 1 } = 3 ^ { - 1 } } \\
{ W _ { 6 } ^ { - 1 } + W _ { 9 } ^ { - 1 } = 3 ^ { - 1 } } \\
{ W _ { 6 } ^ { - 1 } + W _ { 1 0 } ^ { - 1 } = 3 ^ { - 1 } \stackrel { \text { equal widths in path } } { } } \\
{ W _ { 7 } ^ { - 1 } + W _ { 8 } ^ { - 1 } = 3 ^ { - 1 } } \\
{ W _ { 7 } ^ { - 1 } + W _ { 9 } ^ { - 1 } = 3 ^ { - 1 } } \\
{ W _ { 7 } ^ { - 1 } + W _ { 1 0 } ^ { - 1 } = 3 ^ { - 1 } }
\end{array} \left\{\begin{array}{l}
W_{6}=W_{8}=6 \\
W_{6}=W_{9}=6 \\
W_{6}=6 \\
W_{7}=W_{8}=6 \\
W_{8}=W_{9}=6 \\
W_{9}=W_{10}=6
\end{array}\right.\right.
$$

Hence $W_{1}=W_{2}=10 L_{\text {min }}, W_{3}=W_{4}=W_{5}=15 L_{\text {min }}$, and $W_{6}=W_{7}=W_{8}=W_{9}=W_{10}=6 L_{\text {min }}$.

