TSTE86 Homework 4: Interconnection

Consider a clock driver connected with a metal wire as shown in Figure 1. The wire has width $W = 0.5 \ \mu\text{m}$, sheet resistance $r_W = 75 \text{m}\Omega/\text{sq}$, area capacitance $c_a = 30 \ \text{aF}/(\mu\text{m})^2$, and fringe capacitance $c_f = 40 \ \text{aF}/\mu\text{m}$.

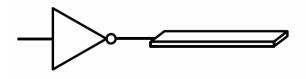


Figure 1. Clock driver loaded by metal wire.

- a) Model the entire circuit. The driver is modeled with a voltage source V_{in} , a series resistor R_S , and a capacitor C_S to ground. The distributed wire is modeled with a lumped RC network (e.g. π model).
- b) Use the Elmore model to find the wire length if the propagation delay in this circuit is twice the inherent propagation delay of the driver (delay without any load). Assume $R_S = 7.25 \text{ k}\Omega$ and $C_S = 6 \text{ fF}$.
- c) What is the propagation delay of this circuit and what is the wire contribution in this case?
- d) Assume the propagation delay of the wire is the same as the propagation delay of the driver when loaded by such a wire. Find the wire length and the propagation delay of this circuit.