Solutions to exam 2020-01-13 in TSTE85 Low Power Electronics

1. For instance, when the output of a static CMOS gate is high, at least one NMOS transistor has a gate voltage of zero. This means that the transistor operates in the subthreshold region where the current normally is small, but it is still large enough to affect the power consumption. One way to reduce the static leakage currents is to increase the bulk voltage of the PMOS transistors and decrease the bulk voltage of the NMOS transistors, which result in higher threshold voltages and therefore lower leakage currents. Another way is to use so called sleep transistors (with a higher threshold voltage) that are turned off when the circuit does no computation. A third way is to use high threshold transistors in non-critical data paths and low threshold transistor in the critical data paths.
2. The probability that the output of the NAND gate is low is $P_{0}=P_{a} P_{b} P_{c}$, yielding the probability that the output is high as $P_{1}=1-P_{0}$. The transition activity is $\alpha_{01}=P_{0} P_{1}=P_{0}(1-$ P_{0}). Find maximum transition activity:

$$
\frac{d \alpha_{01}}{d P_{0}}=1-2 P_{0}=0 \Rightarrow P_{0}=\frac{1}{2}, \frac{d^{2} \alpha_{01}}{d P_{0}^{2}}=-2<0 \Rightarrow \text { this is a max value }
$$

Hence input probabilities given by $P_{a} P_{b} P_{c}=1 / 2$ yield highest $\alpha_{01}=1 / 4$. They are $P_{a}=P_{b}=$ $P_{c}=2^{-1 / 3} \approx 0.79$.
3.
a) Energy density and rank of the battery technologies

Battery	Voltage	Capacity	E density	Rank
LiCoO_{2}	3.7 V	$140 \mathrm{mAh} / \mathrm{g}$	$518 \mathrm{~Wh} / \mathrm{kg}$	2
$\mathrm{LiMn}_{2} \mathrm{O}_{4}$	4.0 V	$100 \mathrm{mAh} / \mathrm{g}$	$400 \mathrm{~Wh} / \mathrm{kg}$	4
LiNiO_{2}	3.5 V	$180 \mathrm{mAh} / \mathrm{g}$	$630 \mathrm{~Wh} / \mathrm{kg}$	1
LiFePO_{4}	3.3 V	$150 \mathrm{mAh} / \mathrm{g}$	$495 \mathrm{~Wh} / \mathrm{kg}$	3

b) Cells for $V_{a v}>16 \mathrm{~V}$ and weight per battery to obtain energy 15 W for $4 \mathrm{~h}=6 \mathrm{~Wh}$

Battery	Voltage	Cells	E density	Weight
LiCoO_{2}	3.7 V	5	$518 \mathrm{~Wh} / \mathrm{kg}$	0.12 kg
$\mathrm{LiMn}_{2} \mathrm{O}_{4}$	4.0 V	4	$400 \mathrm{~Wh} / \mathrm{kg}$	0.15 kg
LiNiO_{2}	3.5 V	5	$630 \mathrm{~Wh} / \mathrm{kg}$	0.10 kg
LiFePO_{4}	3.3 V	5	$495 \mathrm{~Wh} / \mathrm{kg}$	0.12 kg

4. $\quad R=\frac{V_{D D, \text { new }}}{V_{D D, \text { new }}-V_{T}} \cdot \frac{V_{D D, \text { old }}-V_{T}}{V_{D D, \text { old }}} \Rightarrow V_{D D, \text { new }}=\frac{R V_{T} V_{D D, \text { old }}}{V_{T}+R V_{D D, \text { old }}-V_{D D, \text { old }}}$
a) $V_{T}=0.40 \mathrm{~V} \Rightarrow V_{D D, \text { new }} \approx 0.78 \mathrm{~V}$

Power reduction is approximately $1-\frac{0.78^{2}}{1.5^{2}} \approx 73 \%$
b) $\quad V_{T}=0.30 \mathrm{~V} \Rightarrow V_{D D, \text { new }} \approx 0.64 \mathrm{~V}$

Power reduction is approximately $1-\frac{0.64^{2}}{1.5^{2}} \approx 82 \%$
5.
a) Timing with inputs applied at $t=0$

b) Calculate dissipated energy E_{D} as the difference between the energy $E_{B i}$ taken from the battery and the energy $E_{C i}$ stored in the capacitance of node i.

$$
\begin{aligned}
E_{D} & =E_{B x}-E_{C x}+E_{B f}-E_{C f}=\int_{0}^{V_{D D}} C_{L} V_{D D} d V-\int_{0}^{V_{D D}} C_{L} V d V+\int_{0}^{V_{D D} / 2} C_{L} V_{D D} d V-0= \\
& =C_{L} V_{D D}[V]_{0}^{V_{D D}}-C_{L}\left[\frac{V^{2}}{2}\right]_{0}^{V_{D D}}+C_{L} V_{D D}[V]_{0}^{V_{D D / 2}}=C_{L} V_{D D}^{2}-\frac{C_{L} V_{D D}^{2}}{2}+\frac{C_{L} V_{D D}^{2}}{2}=C_{L} V_{D D}^{2}
\end{aligned}
$$

c) Timing and dissipated energy with input c delayed 1 ns

6.
a) Assume first step of charging starts at time t_{0} and finishes at time t_{1}. Denoting the charge current i_{C}, capacitance of the load C, and the voltage over the load V_{C}, the energy taken from the $V_{D D 1}$ supply is

$$
E_{V D D 1}=\int_{t_{0}}^{t_{1}} V_{D D 1} i_{C} d t=\int_{t_{0}}^{t_{1}} V_{D D 1} C\left(\frac{d V_{C}}{d t}\right) d t=\left\langle t_{1} \gg t_{0}\right\rangle=V_{D D 1} C \int_{0}^{V_{D D 1}} d V_{C}=C V_{D D 1}^{2}
$$

Assume second step of charging finishes at time t_{2}. The energy taken from the $V_{D D 2}$ supply during this phase is
$E_{V D D 2}=\int_{t_{1}}^{t_{2}} V_{D D 2} i_{C} d t=\int_{t_{1}}^{t_{2}} V_{D D 2} C\left(\frac{d V_{C}}{d t}\right) d t=\left\langle t_{2}>t_{1}\right\rangle=V_{D D 2} C \int_{V_{D D 1}}^{V_{D D 2}} d V_{C}=C V_{D D 2}\left(V_{D D 2}-V_{D D 1}\right)$
Total energy taken from both supplies is
$E_{t o t}=E_{V D D 1}+E_{V D D 2}=C\left(V_{D D 1}^{2}+V_{D D 2}^{2}-V_{D D 1} V_{D D 2}\right)$
Energy stored in the capacitor is
$E_{C}=C V_{D D 2}^{2} / 2$
Dissipated energy is
$E_{\text {diss }}=E_{\text {tot }}-E_{C}=\left\langle t_{2}>t_{1}>t_{0}\right\rangle=C\left(V_{D D 1}^{2}+V_{D D 2}^{2} / 2-V_{D D 1} V_{D D 2}\right)$
b) Assume ratio $r=V_{D D 1} / V_{D D 2} \Rightarrow$
$E_{\text {diss }}=C\left(r^{2} V_{D D 2}^{2}+V_{D D 2}^{2} / 2-r V_{D D 2}^{2}\right)=\left(r^{2}-r+1 / 2\right) C V_{D D 2}^{2}$
Find minimal energy dissipation with respect to r
$\frac{d E_{\text {diss }}}{d r}=(2 r-1) C V_{D D 2}^{2}=0 \Rightarrow r=\frac{1}{2}, \frac{d^{2} E_{\text {diss }}}{d r^{2}}=C V_{D D 2}^{2}>0 \Rightarrow r=\frac{1}{2}$ is a local minima
Minimal energy dissipation
$E_{\text {min }}=C\left(V_{D D 2}^{2} / 4+V_{D D 2}^{2} / 2-V_{D D 2}^{2} / 2\right)=C V_{D D 2}^{2} / 4$ for $V_{D D 1}=V_{D D 2} / 2$
7.
a) Critical path through c-d $\Rightarrow t_{o l d}=4+3 \mathrm{~ns}=7 \mathrm{~ns} @ V_{d d}=V_{\text {old }}=1.5 \mathrm{~V}$

Relation between old and new times and supply voltages
$\frac{t_{\text {new }}}{t_{\text {old }}}=\frac{V_{\text {new }}}{\left(V_{\text {new }}-V_{T}\right)^{2}} \cdot \frac{\left(V_{\text {old }}-V_{T}\right)^{2}}{V_{\text {old }}}$
where
$t_{\text {new }}=(125 \mathrm{MHz})^{-1}=8 \mathrm{~ns}, V_{T}=0.4 \mathrm{~V}$ and $V_{\text {new }}$ is sought
Solve e.g. by inserting numerical values
$\frac{8^{2}}{7^{2}}=\frac{V_{\text {new }}}{\left(V_{\text {new }}-0.33\right)^{2}} \cdot \frac{(1.5-0.33)^{2}}{1.5} \Leftrightarrow \frac{8^{2} \cdot 1.5}{7^{2} \cdot(1.5-0.33)^{2}}\left(V_{\text {new }}-0.33\right)^{2}-V_{\text {new }}=0 \Rightarrow$
$V_{\text {new }} \approx 1.38 \mathrm{~V}$ (other solution is less than V_{T})
Power saving
$S=1-\frac{P_{\text {new }}}{P_{\text {old }}}=1-\frac{f C V_{\text {new }}^{2}}{f C V_{\text {old }}^{2}} \approx 1-\frac{1.38^{2}}{1.5^{2}} \approx 15 \%$
b) Pipelining according to e.g. cut in figure below

New critical path is through c-reg. Repeating calculations with $t_{\text {old }}=t_{\text {pipe }}=4 \mathrm{~ns}$ yields $V_{\text {pipe }} \approx 1.01 \mathrm{~V}$ and $S_{\text {pipe }} \approx 54 \%$.
8. Consider the diagram below that illustrates required timing to let the system be active during transmissions. We need to add one maximum error to the active intervals due to late wake ups and another maximum error due to early wakeups to not miss the transmission intervals.

a) Timing when missed transmissions are allowed
$t_{\text {error }}=0 \Rightarrow t_{\text {active }}=0.001 \mathrm{~s}, t_{\text {sleep }}=0.999 \mathrm{~s}$ and $T_{\text {cycle }}=t_{\text {active }}+t_{\text {sleep }}=1.000 \mathrm{~s}$
Power dissipation

$$
\begin{aligned}
& P_{\text {active }}=2 \cdot 10^{-3} \mathrm{~W}, P_{\text {sleep }}=200 \cdot 10^{-9} \mathrm{~W}, P_{\text {timer }}=100 \cdot 10^{-9} \mathrm{~W} \\
& P_{a}=\frac{P_{\text {active }} t_{\text {active }}}{T_{\text {cycle }}}+\frac{P_{\text {sleep }} t_{\text {sleep }}}{}+P_{\text {timer }} \approx 2.2 \mu \mathrm{~W}
\end{aligned}
$$

b) Timing when missed transmissions are not allowed

$$
\begin{aligned}
& t_{\text {error }}=0.999 \cdot 500 \cdot 10^{-6} \mathrm{~s} \approx 0.0005 \mathrm{~s} \Rightarrow \\
& t_{\text {active }}^{\prime}=t_{\text {active }}+2 t_{\text {error }} \approx 0.002 \mathrm{~s} \text { and } t_{\text {sleep }}^{\prime}=t_{\text {sleep }}-2 t_{\text {error }} \approx 0.998 \mathrm{~s}
\end{aligned}
$$

Power dissipation

$$
P_{b}=\frac{P_{\text {active }} t_{\text {active }}^{\prime}}{T_{\text {cycle }}}+\frac{P_{\text {sleep }} t_{\text {slep p }}^{\prime}}{T_{\text {cycle }}}+P_{\text {timer }} \approx 4.2 \mu \mathrm{~W}
$$

c) Timing after redesign with more accurate sleep timer

$$
\begin{aligned}
& t_{\text {error }}^{\prime \prime}=0.999 \cdot 200 \cdot 10^{-6} \mathrm{~s} \approx 0.0002 \mathrm{~s} \Rightarrow \\
& t_{\text {active }}^{\prime \prime}=t_{\text {active }}+2 t_{\text {error }}^{\prime \prime} \approx 0.0014 \mathrm{~s} \text { and } t_{\text {sleep }}^{\prime \prime}=t_{\text {sleep }}-2 t_{\text {error }}^{\prime \prime} \approx 0.9986 \mathrm{~s}
\end{aligned}
$$

Power dissipation

$$
\begin{aligned}
& P_{\text {timer }}^{\prime \prime}=40 \cdot 10^{-9} \mathrm{~W} \\
& P_{c}=\frac{P_{\text {active }} t_{\text {active }}}{T_{\text {cycle }}}+\frac{P_{\text {sleep }} t_{\text {sleep }}^{\prime \prime}}{T_{\text {cycle }}}+P_{\text {timer }}^{\prime \prime} \approx 3.0 \mu \mathrm{~W}
\end{aligned}
$$

