### Thermodynamics for computing engines

- During an adiabatic process no loss or gain of heat occurs
- Relationship between information and energy
  - 1. Bits can be adiabatically generated
  - 2. Bits can be adiabatically copied
  - 3. Bits cannot be adiabatically erased
- To minimize the impact of erasure, the dissipation can be postponed by copying the information instead of erasing it



Low Power Electronics

Mark Vesterbacka

Special techniques

p.1

#### Adiabatic line driver circuit

- f = 1 MHz,  $C_{\text{load}} = 8 \times 100 \text{ pF} \Rightarrow$
- $P_{\text{total}} = 0.15 P_{\text{conventional}}$ 
  - $P_{\text{aldc}} = 0.5 P_{\text{total}}$
  - $P_{\text{FET}} = 0.3 P_{\text{total}}$
  - $P_{\text{FET\_gate}} = 0.2 P_{\text{total}}$

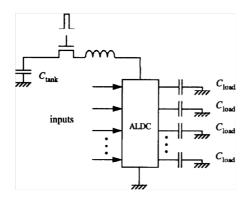



Fig. 3 Test set up

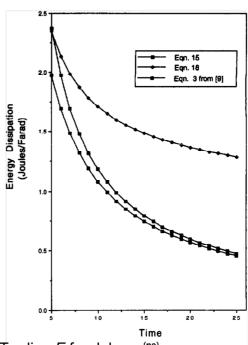
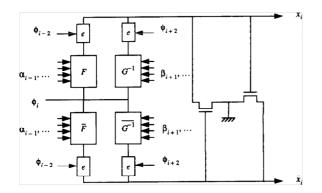




Fig. 4 Trading *E* for delay (ns)



## Adiabatic logic pipeline



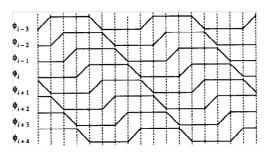



Fig. 8. Dual-rail logic and its 8-phase adiabatic clock signals



Low Power Electronics

Mark Vesterbacka

Special techniques

p.3

## Energy sources

| Light          | Outdoor | 10 000 μW/cm <sup>2</sup> |
|----------------|---------|---------------------------|
|                | Office  | 100 μW/cm <sup>2</sup>    |
|                | Indoor  | 10 μW/cm <sup>2</sup>     |
| RF             | GSM     | 1-20 μW/cm <sup>2</sup>   |
|                | WiFi    | 1 μW/cm <sup>2</sup>      |
| Thermoelectric | Machine | 10 000 μW/cm <sup>2</sup> |
|                | Human   | 25-60 μW/cm <sup>2</sup>  |
| Vibration      | Machine | 800 μW/cm <sup>3</sup>    |
|                | Human   | 4 μW/cm <sup>3</sup>      |



# Multi-harvesting power chip

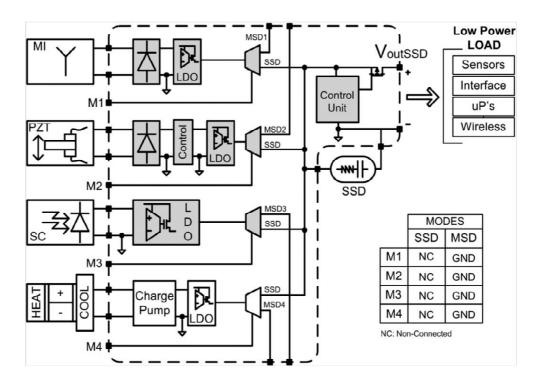
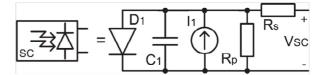


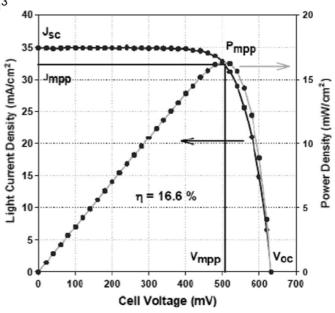

Fig. 1

LiU

Low Power Electronics

Mark Vesterbacka


Special techniques

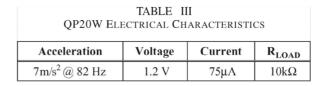

p.5

## Solar cell (SC)

- Three solar cells per package
  - Total volume 22 x 7 x 1.6 mm<sup>3</sup>

| TABLE II IXYS XOB17 ELECTRICAL CHARACTERISTICS |                        |      |    |  |
|------------------------------------------------|------------------------|------|----|--|
| Symbol                                         | l Parameter Value Unit |      |    |  |
| $V_{OC}$                                       | open circuit voltage   | 1.89 | V  |  |
| $I_{SC}$                                       | short circuit current  | 12.6 | mA |  |
| $V_{MPP}$                                      | voltage@ MPP           | 1.53 | V  |  |
| $I_{MPP}$                                      | current @ MPP          | 11.7 | mA |  |






Figs. 2-3



### Piezoelectric generator (PZT)

Two generators per device with total volume 51 x 38 x 0.8 mm<sup>3</sup>



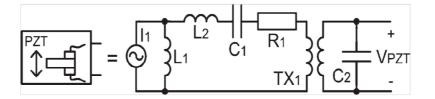



Fig. 4

LiU

Low Power Electronics

Mark Vesterbacka

Special techniques

**D.** 

### Magnetic induction power link (MI)

- RFID 200 mW transmitter
  - Receiver coil on PCB
  - Area 30 x 15 mm<sup>2</sup>

| TABLE IV RECTANGULAR COIL CHARACTERISTICS |                             |         |           |  |
|-------------------------------------------|-----------------------------|---------|-----------|--|
| Symbol                                    | Symbol Parameter            |         | Units     |  |
| $L_2$                                     | secondary coil              | 220     | nН        |  |
| C <sub>2</sub>                            | parallel capacitor          | 620     | pF        |  |
| $R_{S2}$                                  | secondary series resistance | 310     | $m\Omega$ |  |
| f                                         | Resonance frequency         | 13.56   | MHz       |  |
| N                                         | number of turns             | 3       | -         |  |
| CW                                        | Conductor width             | 1       | mm        |  |
| SUB                                       | type of substrate           | FR4     | -         |  |
| LxW                                       | dimensions                  | 30 x 15 | mm        |  |

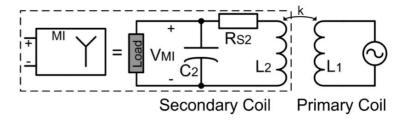



Fig. 5



#### Rectifier

PMOS is more efficient than NMOS but larger

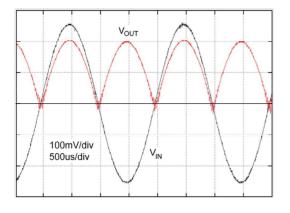
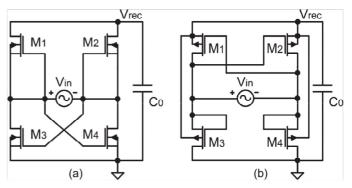




Fig. 6

### TABLE V NMOS FULL-Wave Rectifier Characteristics

| Symbol               | Parameter                 | Min   | Max  | Units |
|----------------------|---------------------------|-------|------|-------|
| V <sub>IN</sub>      | nominal input voltage     | 0.3   | 2.5  | Vp    |
| $V_{drop}$           | drop voltage              | 0.2   | 0.67 | V     |
| I <sub>out</sub>     | output current            | -     | 20m  | A     |
| Freq                 | working frequency         | -     | 16M  | Hz    |
| η                    | efficiency                | 52    | 85   | %     |
| I <sub>leakage</sub> | leakage current           | -     | 1.4m | A     |
| W                    | width of each transistor  | 3000μ |      | m     |
| L                    | length of each transistor | 0.28μ |      | m     |



LiU

Low Power Electronics

Mark Vesterbacka

Special techniques

p.9

## Low drop-out regulator (LDO)

Large off-chip C<sub>L</sub> is used for stability

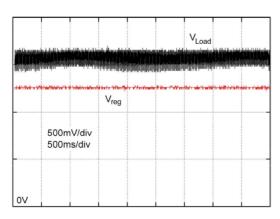



Fig. 14

TABLE VI LDO ELECTRICAL CHARACTERISTICS

| Symbol              | Parameter               | Min   | Max  | Units |
|---------------------|-------------------------|-------|------|-------|
| $V_{IN}$            | input voltage           | 1.3   | 2.5  | V     |
| V <sub>Reg</sub>    | regulated outputvoltage | 1.189 | 1.22 | V     |
| $I_{Reg}$           | output current          | 20μ   | 10m  | A     |
| $I_{CC}$            | current consumption     | 23μ   | 27μ  | A     |
| P <sub>CC</sub>     | power consumption       | 29 μ  | 67 μ | W     |
| $\Lambda_{ m Load}$ | load regulation*        | 13m   | 34m  | V     |
| $\Lambda_{ m Line}$ | line regulation**       | 7m    | 18m  | V     |
| $\Lambda_{ m DC}$   | DC gain                 | 63    | 72   | dB    |
| P <sub>M</sub>      | phase margin            | 58    | 65   | 0     |
| PSSR                | supply rejection ratio  | 28.7  | 39.4 | dB    |

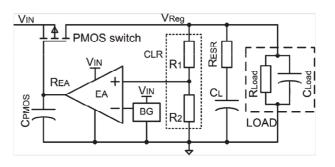



Fig. 12



### Power consumption of the components

- Low-dropout regulator (LDO)
  - $P = 30 \mu W \text{ per LDO}$
- Control module
  - $P = 70 \mu W$
- Combination of the three power sources
  - $P = 60 \mu W$



Low Power Electronics

Mark Vesterbacka

Special techniques

p.11

### Multi-harvesting power chip

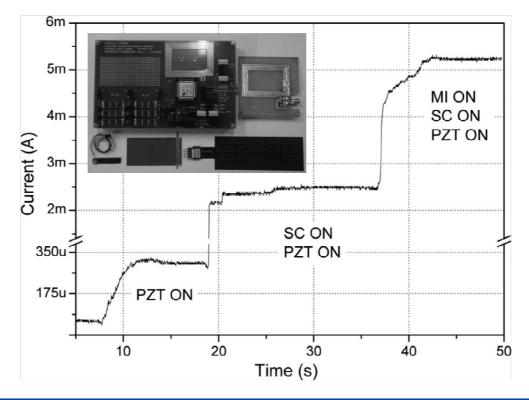



Fig. 18



### Some experimental applications

- [79]: Ultrasonic powering
  - P = 21 nW
- [91]: Temperature measurement and transmission every 5 s
  - $P = 10 \mu W$
- [92]: Pulse oximeter sensor
  - $P = 90 \mu W$
- [93]: Average sensor node measuring and transmitting 200 kb/s
  - $P = 200 \, \mu W$



Low Power Electronics

Mark Vesterbacka

Special techniques

p.1

#### References

15.pdf Low-power digital systems based on adiabaticswitching principles

W.C. Athas, L.J. Svensson, J.G. Koller, N. Tzartzanis, and E. Ying-Chin Chou

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, volume 2, issue 4, Dec. 1994, pages 398-407

16.pdf A multiharvested self-powered system in a low-voltage low-power technology

J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, and J. Samitier

IEEE Transactions on Industrial Electronics, volume 58, issue 9, Sept. 2011, pages 4250-4263

