1. Introduction					
2. System level					
3. Algorithm level					
 Architecture level Register transfer level Logic level Circuit level Synchronization 					
			9. Low power components		
			10. Analog circuits	(Guest lecturer: J Jacob Wikner)	
			11. Radio circuits	(Guest lecturer: Ted Johansson)	
			12 Special techniques		

Outline today's lecture

- Analog CMOS low power •
- Power efficiency
- Techniques to meet analog low power
- Experimental results •

Introduction

- There are some different questions arising:
 - How much current do we need to operate an analog circuit?
 - How much voltage do we need to operate an analog circuit?
- A common figure of merit is: power required to realize a single pole given a certain gain
 - Applicable to for example comparators too

LiU

Practical power limits

- Technology dependent limitations
 - Capacitors increase P
 - P in bias circuit is "wasted"
 - Signal $V_{pp} < V_{dd}$ increases P
 - Additional noise sources increase P
 - Low transconductance-to-current ratio g_m/I increases P for C loads
 - Precision devices are large, increasing parasitic C and P
 - The clock in switched capacitor circuits may be dominant
- Ways to reduce *P* is found at all levels of analog design

Power efficient analog circuits

- Voltage is not critically related to power
 - Use sleep modes
 - Use voltage multipliers when the supply voltage is very low
 - charge pump, boosting...
- High-frequency requires much power
 - Select architecture with few devices operating
 - Amplify signals early in the signal chain
 - Use subsampling if possible
- And ... go to digital domain A.S.A.P!

References

12.pdf CMOS low-power analog circuit design

C.C. Enz and E.A. Vittoz

Designing Low Power Digital Systems, Emerging Technologies, 1996, pages 79-86 and 116-133

[Sve10] Power consumption of analog circuits: a tutorial

C. Svensson and J.J. Wikner

Analog Integrated Circuits and Signal Processing, volume 65, issue 2, Springer, 2010, pages 524-543

Low Power Electronics J Jacob Wikner