

System level energy management

- Energy management can be done at
 - User level
 - Application level
 - Operating system level
 - Component level
- Issues
 - How much is power reduced? Relative to system power?
 - How is a feature changing power of other components?
 - How is the battery capacity affected?
- "Maximum battery lifetime is not necessarily what users want, they want to maximize the amount of work they can accomplish before the battery runs out"

Power budget

- Battery technology
 - The highest capacity battery technology is lithium-ion, today providing ~500 Wh/L and ~150 Wh/kg
- Main consumers of power (with active power management)
 - Backlight
 - Processor
 - Video system
 - Hard disk
 - Memory
 - Wireless communication

LiU

Energy optimizations in software

- Needed component information
 - Knowledge about its power mode characteristics
 - Information about its future functionality requirements

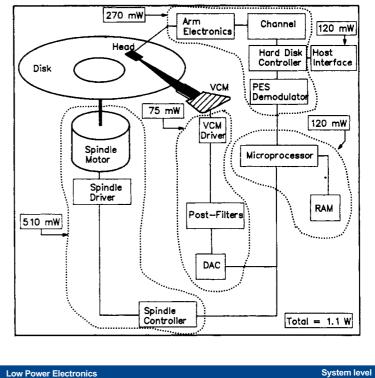
Optimization strategies

- Transition: When should a component switch between modes?

Low Power Electronics

Mark Vesterbacka

- Load-change: How modify a component's functionality needs so it can be put in LP modes more often?
- Adaptation: How can software permit novel, power-saving uses of components?



System level

p.3

Hard disk

- Typical power modes
 - Active-disk operates
 - Idle-motor on
 - Standby—controller on
 - Sleep-reset logic on
 - Off

LiU

Low Power Electronics Mark Vesterbacka

Hard disk

- Power considerations
 - Cache improves the overall performance of secondary storage and reduces its power consumption
 - Turning the motor off may increase energy consumption
 - Loosing cache may also increase energy consumption

Hard disk load-change strategies

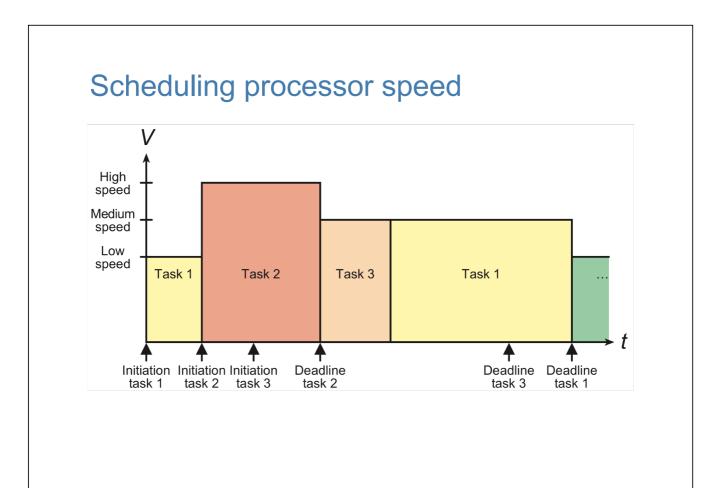
- Examples on load change
 - Increasing cache size
 - Increasing dirty block timeout
 - File name and attribute caching
 - Prefetching data
 - Improving memory access locality

Low Power Electronics Mark Vesterbacka

System level

Disk adaptation strategies

- Examples on adaptation
 - Use of flash memory as low-power disk
 - Use of flash memory as disk cache
 - Wireless connection to a file server
 - Use disk merely as a large cache for the server file system
 - Make computer into a pure terminal
 - Low rotation speed modes



Processor

- Power-saving processor features
 - Slow down the clock (and decrease V to reduce E consumption)
 - Selectively shut off functional units
 - Shut down processor operation
- Software
 - Use energy-aware compilers (decrease # of executed instructions)

Low Power Electronics Mark Vesterbacka

- Hardware innovations
 - Design other system components with low power states
 - Use multiple power domains

LiU

System level

р.9

Wireless transition strategies

- Wireless device power consumption depends strongly on distance
- Wireless communication devices typically have five operating modes
 - Transmit
 - Receive
 - Idle
 - Sleep
 - Off
- Transition strategies
 - Entering sleep mode quickly
 - Changing transmission power depending on quality of service

Low Power Electronics Mark Vesterbacka

LiU

Wireless load-change strategies

- Load-change strategies
 - Compressing TCP/IP headers can reduce their size by an order of magnitude
 - Reduce the data transmission rate or stop data transmission altogether when the channel is bad
 - Provide mobile clients with versions of data with reduced fidelity and smaller size
 - Use a medium access protocol dictating when wireless devices may receive data
 - Simultaneous change of error correction and link bandwidth

System level

Display and backlight

- Power considerations
 - The display unit including backlight typically consumes more power than any other component
 - Low-power backlight and display states \Rightarrow 32-67% reduction

Transition strategies

- Turning display off
- Reducing brightness level
- Reducing update frequency
- Switching from color to monochrome

LiU

Low Power Electronics Mark Vesterbacka

Display and backlight

- Hardware innovations
 - Switch to a lower update frequency when the items displayed do not require a high update frequency
 - Switch to a lower-power display mode when the visually important parts do not require high quality
 - If a device detects when the user is not looking at the screen, the system can turn off the display and backlight
 - If a device senses the ambient light level, the system can dim the backlight accordingly
 - Using a light virtual desktop pattern rather than a dark one can reduce the load on the backlight
 - Software could decrease the resolution of a screen image by only illuminating a certain fraction of its pixels

System level

p.13

Memory

- Memory is implemented using DRAM with three modes
 - Active
 - Standby
 - Off
- Saving memory power
 - Main memory is saved to disk and the memory system is turned off
 - Use of energy-aware compilers
 - Use of compact and efficient operating system code
 - Convince the user to purchase a machine with less main memory
 - Divide memory into independent banks
 - Compress the contents of memory, and turn off unused banks

Low Power Electronics

Mark Vesterbacka

lil

Energy management conclusions

- General considerations
 - Software modification is generally needed to make the best use of a hardware feature
 - Energy consumption can be reduced by introducing lower-power, lower-functionality modes for those components
 - There is a trade-off between energy savings and performance
 - Seemingly independent energy management strategies can interact

System level

p.15

Reference

02.pdf Software strategies for portable computer energy management

J.R. Lorch and A.J. Smith

IEEE Personal Communications, volume 5, issue 3, June 1998, pages 60-73

Low Power Electronics Mark Vesterbacka System level