
No Rev Date Repo Page

0001 B 2011-09-07 MSPS 1 of 33

Title Introduction to Behavioral-Level Simulation

File MSPS_0001_LM_cadenceBehavioral_B.odt

Type EX -- Laboratory Manual 1,
MSPS

Area ES : docs : courses : msps

Created Hägglund, et al. Approved J Jacob Wikner

Issued J Jacob Wikner, jacwi50 Class Public

Laboratory Manual 1, MSPS

Introduction to Behavioral-Level Simulation

Description

The purpose of this laboratory exercise is mainly to provide the student with hands-on experience of
the Cadence design tools used in the TSTE16 course: Mixed-Signal Processing Systems.

The laboratory also gives an illustration of top-down design methodology.

Outline

Table of Contents

1.Overview / Introduction...3
2.Getting Started with Cadence...5
3.Inspecting Simulation Results...12
4.Useful Shortcut Keys in the Schematic View...14
5.The First Model of Filter and ADC Chain...15
6.Refining the Filter Implementation..30
7.Using the Hierarchy Editor..31
8.Wrap-up...33

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 2 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Document history

Rev Date Comment Issued/Created by

1.0 2009-05-30 Creation. Hägglund, et al.

2.0 2009-08-30 New document template, updated design kit, and
changed the descriptions.

Per Löwenborg

PA3 2010-09-02 Aligned the document with the new Centos 5 system
installed during Summer 2010. This also implies
changing spectreHDL to veriloga.

J Jacob Wikner

PA4 2010-09-07 Removing some redundant blahblah due to change to
veriloga. Changing the references to the matlab code.

J Jacob Wikner

PA6 2010-09-08 Updated with veriloga code Niklas U Andersson

PA7 2010-09-08 Touch up and preparation for release J Jacob Wikner

A 2010-09-08 Released for 2010 class. J Jacob Wikner

P1B 2011-09-07 Touch up wrt. Cadence 6. J Jacob Wikner

B 2011-09-07 Released for 2011 class. J Jacob Wikner

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 3 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

1. OVERVIEW / INTRODUCTION

The principle system that is considered throughout the laboratory is shown in Figure 1.1. It consists of
an analog filter, followed by a uniform sampling and then quantization. Only a very basic understanding
of these blocks is required in order to complete this exercise and necessary details will be explained
during the course of the laboratory.

1.1 Initiating your Linux Environment

In this laboratory we will use a circuit design tool from the vendor Cadence. The Cadence tool suite
contains many different tools, such as component simulators, integrated circuit layout tool, physical
verification, logical verification and so on. For this lab, we will only consider the circuit-level simulation
package (including a schematic capture program and a simulation environment).

When a circuit is created as a graphical netlist (schematic view), different types of circuit simulators
can be used, for example HSPICE, Spectre, and SpectreS. The circuit simulators offer several types of
analyses, such as DC, AC, transient, noise, etc. The speed and accuracy of the simulations also vary
between the simulators. In this laboratory the Cadence Spectre simulator is used.

We start the exercise by setting up your linux environment. Load the course module:

module load TSTE16

Make sure that you are in your home account

cd

and then run a shell script

daisyCreateProj.sh TSTE16

✗ Only run this script once – the very first time you work with this lab!
Although low risk, you might risk loosing data if you run it on an existing project directory.

This shell script will create a directory in your home directory called TSTE16 (this is also what we from
now on refer to as your $WORKAREA = $HOME/TSTE16). Further on, it will inside that directory create
some other directories as well as links to files and directories. For now, you do not have to worry too
much about them, but during the project work in this course, they will play a quite important role.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 1.1: Basic system studied in the first laboratory exercises.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 4 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Source a dot file that was created by the script above:

source ~/.TSTE16_rc

(Please contact the lab responsible if this results in any errors or strange warning messages). Go to
the $WORKAREA (~/TSTE16) by typing:

cde

Now, in the $WORKAREA directory you will find a link to daisyProjSetup and inside that directory you
will also find lab simulation files, course information, etc. In your $WORKAREA you also find a
work_$USER directory in which you should put all your personal files related to the lab.

✗ Keep your files in a neat order! That is very important for project-based, top-down approach!

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 5 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

2. GETTING STARTED WITH CADENCE

Launch the Cadence design framework by typing:

cad

For the lab and the project as such, you will not only need the Cadence tools but also a system-level
simulation tool, either Matlab or Octave (GNU free ware). We are mainly going to use Matlab/Octave
for modeling the digital parts of the transceiver design and for analyses of test data.

Once the program has started you will find a so called command-interpreter window (the CIW). This is
the main interface window and here error messages, log files, warnings, etc., will be displayed. You
also have access to the whole framework in the tools menu, etc. Dependent on your window manager
settings, this window will raise if you press the Alt + Home key combination.

✗ Notice that the Alt key is for some setups not activated. Contact the lab responsible or see the
course blog for more information.

Another very important window is the Library Manager which you launch/raise by pressing the
combined keys Alt + End or through the menus Tools > Library Manager... in the CIW. The
library manager should contain all the different design libraries that you need. We will also add our own
libraries and circuit definitions through this tool.

Essentially, the only libraries required in these exercises are analogLib, and ahdlLib, and daisy. In
analogLib we have ideal components like voltage sources, current sources, ideal resistors and
capacitors, etc. The others contain more complex components. For example, in the ahdlLib library
you find components that are described in veriloga (a language used for describing analog circuits).

✗ You can copy and paste from the code of these components in order to build up your own cells.

In the library daisy you find two cells named daisyFileWriter and daisyFileReader which are
used later throughout the lab.

2.1 Creating a New Design Library

When you start a new project or a new set of design you need to create a new design library. In this
library you can place your new cells. Select File > New > Library in the Library Manager. The tool
asks you for where in the linux domain to put the library. Browse to your $WORKAREA and subdirectory:

work_$USER/oa/

where $USER is your login ID (e.g. stdent123). Further, enter a name for the new directory and press
OK. In this lab we will refer to the following name:

tste16Lab1

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 6 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

✗ Be consistent with naming, for example tag them with tste16 or group2 or something. so that it
is clearly indicated what the purpose of the library is.

After pressing OK, a new dialogue window appears where you should select a technology to attach to
your library. Select Attach to an existing techfile and press OK. Choose Technology Library
to gpdk045 and press OK again.

Now you have a brand new design library in which you can start creating your own designs. As a
companion to the design library we will now create yet another library in the same way. Place it in the
same linux area and call it:

tste16Lab1Test

or <SAME_NAME_AS_YOU_USED_BEFORE>Test so that the postfix is Test. This library is going to
contain your test benches.

✗ It is not good practice to have test benches in your actual design library. They should be put in
a separate design directory and should preferrably also be technology independent.

2.2 Creating a New Cell View

In a design library several cells can be stored (compare with the library structure in a computer), but
each cell can also consist of several different descriptions (cell views). For example, a circuit can be
described by a short code snippet, a circuit netlist, a layout description, and so on. (In fact one can
even add documentation, web pages, pdfs, etc. as cell views too.) When you are creating a new cell
you therefore also need to choose which type of description you will use. A cell/cell view is created by
the following procedure:

Select the directory where you like to have your cell view. Select File > New > Cell View. Enter a
Cell Name and choose a Tool. Be consistent when it comes to naming of cells too (this is very vital
for e.g. the design projects and sharing cells between different team members). One wants, for
example, to avoid names like: cell1 or filter. Instead use a descriptive name and also tagged with
your project name, like for example:

tste16Lab1RcFilter

or something like that.

✗ It is good design practice to tag the cell name with the library name too. Yes, cell names might
become long, but in larger projects it is worth the pain.

The tools that are available for this lab are:

Composer-Schematic to design a circuit in the schematics mode, i.e., a netlist of for example resis-
tors, capacitors, transistors, and so on.

Composer-Symbol to create symbols for a schematic to be used in hierarchical designs.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 7 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

VerilogA-Editor to write a high-level description of a specific cell. This can have the advantage
that a high-level model can be used for determining specification of specific sub-blocks as well as
decreasing the simulation time of a larger project.

Hierarchy Editor to select which view that is used for a specific simulation. This simplifies the
top-down design approach, since the implementation of a specific system can be decomposed into
subblocks which can gradually be refined.

Virtuoso to create layout of a circuit.

The tool you have selected will then be loaded and it is now possible to start designing your circuit.

2.3 Schematic View

The schematic composer is a graphical interface to design circuits schematics. An example of a
schematic view is shown in Figure 2.1.

The tool can internally generate a netlist in text format describing the circuit topology. This netlist is
normally used for simulation to evaluate the performance or test the functionality of the circuit. In this
particular case we have only one schematic view, which is more or less an ideal description of the
circuit. No parasitic wire capacitors or resistors are found in this model, since those parasitics would be
dependent on the layout of the circuit instead. Post-layout simulations can indeed also be performed so
that further include effects of parasitic elements, and thereby come even closer towards a description
of the real-world implementation. This is however out of the scope of this lab.

2.3.1 Add a New Instance to the Schematic

Elements such as voltage sources, transistors, and capacitors are normally predefined building blocks
that can be inserted in the schematic either through Add > Instance or by the shortcut key 'i'. A
popup window will appear where you can add a component by specifying the library and cellview. You
can either add a predefined cell, for example those listed in Table 2.1, or components that you have
developed yourself. Normally, only cell views of type symbol are inserted into a schematic.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 2.1: Schematic of an RLC type of filter containing input and output ports.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 8 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Component Library Cell Short-cut Key

Supply analogLib vdd ctrl + shift + d

Ground analogLib gnd ctrl + shift + g

DC voltage source analogLib vdc ctrl + shift + v

DC current source analogLib idc ctrl + shift + i

Sinusoidal voltage source analogLib vsin N/A

Sinusoidal current source analogLib isin N/A

Pulse voltage source analogLib vpulse N/A

Pulse current source analogLib ipulse N/A

Voltage controlled voltage source analogLib vcvs N/A

Ideal resistor analogLib res ctrl + shift + r

Ideal capacitor analogLib cap ctrl + shift + c

Ideal inductor analogLib ind ctrl + shift + l

NMOS transistor analogLib nmos4 ctrl + shift + n

PMOS transistor analogLib pmos4 ctrl + shift + p

Dump information to file daisy daisyFileWriter

Get information from file daisy daisyFileReader

Table 2.1: List of cells that are useful for this lab.

When a component is to be placed in the
schematic, either by writing the names of the
library and the cell view or by using the Browse
option, the properties of the selected
components will appear further down in the
pop-up window. For example, the width and
length of a transistor can be defined, the
voltage of a voltage source, resistance, etc.

2.3.2 Defining Design Variables

During the circuit design procedure it is
common that, for example, the capacitance of
a capacitor, bias currents, and voltage values
must be adjusted to ensure that all transistors
are operating in their desired operation region
and to meet a certain specification. In this
case, it is easier to define variables for
parameters that you frequently need to adjust
since you will get access to them directly from
the simulation tool. Defining variables is done by simply writing a variable name in the desired field of
the specific a component. Either add the variable name once you instantiate your component or do it

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 2.2: Illustration of how to add a design variable name.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 9 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

afterwards by clicking on the component and press 'q'. This will give you a properties window, identical
to the window used when instantiating the component. In for example a resistor, the resistance can be
set to the e.g. the variable resValue1.

See Figure 2.2 for a reference (notice that Cadence 6.x has a slightly different look-and-feel).

✗ In a shared project, it is good practice to tag the variable with your signature. For example:
resValue1 → jjwResValue1.
The reason for this is that once other designers invoke your design into their simulator test
benches the risk for using identical variable names is minimized and it also becomes easier to
identify and then to ask designer 'jjw' for a proper variable setup. Please remember this for
your future project assignments.

2.4 Symbolic View

In the symbolic view a symbol for the cell is created. This symbol is used in order to increase the level
of abstraction by using a hierarchical definition of the circuit. For example, the netlist of the ladder filter
shown in Figure 2.1 can be represented by the symbol in Figure 2.3 so that it can be used on a
“higher” level of hierarchy. Typically, several instances of the same building block are used. Hence,
creating a symbol for a specific circuit is most often very practical.

The block can be made more pretty by adding some additional text labels. Remove the [@partName]
and [@instanceName] labels by clicking on them and press delete. Then press alt + r and alt +
a to add some new labels.

✗ Once again, to fix the missing Alt key, talk to lab assistant.

2.5 Functional View (veriloga)
Describing a building block by the use of a hardware description language (HDL) can be very handy.
Especially when designing large systems where the complexity is so large that it becomes impossible
to verify the functionality on a transistor or RC netlist level. This is due to that a functional description of
a building block most often can rapidly be written. This has the benefits that the system can be tested

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 2.3: Symbol view of the schematic cell.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 10 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

at an early stage in the design process which leads to less redesign cycles. Further, the simulation
time can also be decreased by simulating the system using several different levels of abstraction.
There are drawbacks, such that the model is somewhat “incorrect” and that it therefore does not
capture vital flaws or misbehavior of the corresponding netlist implementation of the same block.

The veriloga language is a programming language which can be interpreted by the Cadence Spectre
simulator. This has the benefits that several different descriptions of the individual building blocks can
be simulated at the same time. For example, the ladder filter shown in Figure 2.1 can be simulated with
a veriloga description of its behavior. The syntax in the veriloga language is closely related to the
verilog RTL programming language. More about this language is given later in the lab manual.

2.6 Hierarchy Editor

The hierarchy editor is used for dealing with several different descriptions of the building blocks within
a design. For example, the filter building block can be described by the transfer function as a
mathematical expression in a first model. In the next model, the filter can be described by ideal
components such as resistors, capacitors, and buffers. Later on, these components can be modelled
as non-ideal components which more corresponds to the actual implementation of a fabricated chip.
Hence, there can exist a large number of descriptions for the same building block. The hierarchy editor
can be used to switch between the different descriptions of the building blocks, which facilitates the
top-down design procedure.

Another great advantage is that the hierarchy editor enables us to simulate the same cell with different
views if there are several entities instantiated in the test bench.

2.7 Simulating a Circuit Schematic

As stated earlier, the simulation environment can use several different types of simulators. The
functionality, i.e., the types of analyses, the speed, and the approximation methods when solving the
systems of differential equations, differ between the simulators. Analyses that can be used are, for
example, large-signal analysis (DC), small-signal analysis (AC), transient analysis, different type of
noise analyses, distortion analysis and sensitivity analysis. In the labs we will use the three most
commonly used analyses namely DC, AC and transient analysis

The simulation setup can be divided into three parts namely the analysis setup, setup of the output
signals (the ones we want to plot, observe and extract information from), and adding design variables
to the simulation.

2.7.1 Analysis Setup

DC:

The analysis part is like the ones in Spice: you can either check the DC behavior of the circuit and
check that your components are operating correctly, i.e., all transistors are operating in the correct
operation region and so on. Here you can for example sweep a parameter like the bias current in your
amplifier, supply voltage, etc., to further check the operating conditions.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 11 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

AC:

The properties of the circuit with respect to a small change in the DC operating point can be evaluated
by linearizing nonlinear components around their DC operation points. The linearzation as well as the
simulation is performed by the AC analysis.

Transient:

The transient analysis is used when the time response of a circuit is of interest. This analysis method
takes into account clipping of the circuit and other large signal effects.

Parametric analysis:

Parametric analysis are used when two or more parameters are to be swept independently of each
other. In this case sweep the current in the DC analysis and add a parametric sweep using the menu
alternative in the Affirma Window

Tools > Parametric Analysis

Enter the name of the variable for the output transistor width into the field Variable Name. Add the
ranges of the sweep and start the analysis by selecting

Analysis > Start

2.7.2 Defining Output Signals

The outputs of the simulation can, for example, be the output voltage from an amplifier, the current
through a current mirror or a mathematically defined function to calculate the unity-gain frequency of a
circuit. These outputs can be selected from the schematic by using the menu command Output > To
Be Plotted > Select In Schematic and then select the output to be plotted each time you do a
simulation. Note that by selecting a wire, the node voltage for that node will be plotted, by selecting a
node (for example on one of the resistor terminals) the current through that node will be plotted.

2.7.3 Defining Design Variables

The variables defined in the schematic view can be imported into the simulation environment. This is
done by using the menu alternative

Variables > Copy from Cellview

All the variables will now appear in the variable field in the Affirma Circuit Design Environment window.
To assign a value to one of the parameters just double click on the variable and enter the desired
value.

Notice that you an write a mathematical formula here as well as you can let a design variable be a
function of another design variable.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 12 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

3. INSPECTING SIMULATION RESULTS

The DC operation conditions of a circuit are computed when a DC simulation is performed. If you like
to display the result directly in the schematic use the menu alternative

Result > Annotate >

If you like to display a complete list of the operation condition use

Result > Print >

Some different alternatives in the pop-up menus are listed in table below with a short explanation.

Menu alternative Description

DC node voltage The voltage in a specific node or all nodes.

DC operating point Operating point of a device with for example power consumption.

Table 3.1: Print results options

3.1 The Calculator

The calculator can be used to, for example, add, subtract, multiply, or take the ratio between two
waves, calculate the discrete Fourier transform (DFT) or efficiently compute the DC gain, unity-gain
frequency, phase margin and slew rate of a circuit. It is very handy when you are trying to increase the
performance of a circuit.

Plotting the derivative of a wave can be done in the following way: Start the calculator from the tool bar
in the Waveform Window. Press the Wave button and select a wave in the Waveform Window. Click on
the Special Functions selection box and choose the deriv command. To plot the derivative just
select the Plot button.

Some practical commands to use are compiled in Table 3.2 for convenience.

Command Description

phase Computes the phase of the output

phaseMargin Computes the phase margin of the circuit

cross Returns the x value at which the waveform crosses a certain y value

mag Displays the magnitude response of the wave (linear scale)

dB The quantity expressed in decibel

value Returns the y-value for a certain x value

Table 3.2: Example on some useful calculator commands

✗ In addition one can add scripts, etc., and commands through the CIW. All data available in the
calculator is also available in the CIW. You can for example copy the expression from the
calculator window and paste it into the CIW and press return, etc.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 13 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

✗ Experienced users do not use the calculator that much, but instead writes so called SKILL
scripts to calculate important parameters. The calculator is however a very good starting point
for newbies.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 14 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

4. USEFUL SHORTCUT KEYS IN THE SCHEMATIC VIEW

There are many shortcuts (bind keys) in the program to speed up the design process (there are some
built-in ones, but local bind keys can also quite easily be defined). Some of the most useful bind keys
are listed in table 4.1.

There are some key and mouse combinations that can be used too. For example, during a move and
copy command, a double click at the middle mouse button will make it possible to rotate and flip as
well as coping an object several times.

Short-cut Description

B Return from hierarchy descent

c Copy. Press c then choose object to move

delete key Delete

E Descend in the hierarchy

escape End last command

f Zoom out to full view

i Insert component

l (small L) Add a label to a wire

m Move an object

p Add a pin (needed only for hierarchical objects)

q Properties of an object

r Rotate an object

u Undo

w Add a wire

X Save the cellview

z Zoom in a box

F1 Help

F6 Redraw

8 Zoom out

9 Zoom in

Table 4.1: Shortcut keys (bind keys)

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 15 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

5. THE FIRST MODEL OF FILTER AND ADC CHAIN

The task of this first lab is to design a filter (anti-aliasing filter) and ADC chain. In this section a simple
model of this chain is designed. The filter should be a first-order filter with the -3-dB cut-off frequency at
100 kHz and the ADC should have 16 quantization levels, i.e., it should be a 4-bit converter.

We start with the design of the filter which we would like to implement using the veriloga language.
Typically, in order to make the veriloga cell view it is advantageous to start to make the symbol for the
filter. The filter symbol should consist of three terminals; input, output, and a ground terminal.

In section 2.1 and 2.2 it was shown how to add a new library and cellview. So here, the first thing to do
is either to create a new library or chose to use the one you created before. A good name for the library
is tste16Lab1. Next step is to add a symbolic cellview to that library by using the library manager. Use
for example the following name: tste16Lab1RcFilter.

✗ Once again, it is good practice to also inherit the library name in the cell name. This is for
compatibility with other tool vendors, where the design libraries are treated a bit differently, and
also in a spice netlist file, the hierarchy does not exist.

5.1 Drawing the Symbol

When you have created the cell, an empty window called Virtuoso Symbol Editing appears. In this
window we will create the symbol shown in Figure .

Start by inserting the inout and output pins by pressing the shortcut for insert pin, p, and add the pins
Vin, Vout, and AGND. (You can separate the pin names with space on a single line). Note, that the pins
should be of direction inputOutput type square.

Add the shapes of the symbol, i.e., rectangle, line, and arc from the menu Add > Shape. The last part
is to add a selection box around the symbol. This is done by the command Add > Selection box
and then press Automatic. Your symbol could look like the one in Figure 5.1.

✗ Use “good” signal names and be consistent. Normally in projects there should be strict
requirements on signal names in order to avoid confusion when other designers are working
with ”unknown” blocks. There must not be any ambiguity when it comes to understanding the
signal and its purpose.

One can pretty print it even more, by adding labels, putting pins on grid, etc. If you like you can do this
by first deselecting everyting (press in the empty black area outside the symbol). Then press alt + a
to get simulation annotation variables on the pins, alt + r to get cell names, etc. Finally press ctrl
+ a to select everything and then ctrl + 2 to put it on grid. Move labels around if you like.

Check and Save the symbol, i.e., Design > Check and Save. Make sure that there are no errors or
warnings in the CIW. If there are any errors correct them before you continue.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 16 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

The symbol is now finished and the next step is to create the functional description of the filter using
veriloga. We should now create a veriloga cellview. This can be done directly from the Affirma Symbol
Editing window by using the command

Design > Create Cellview > From Cellview...

In the dialog box that appears change the Tool / Data Type to Verilog-Editor. Change the view
name from functional to veriloga. A new dialog box might appear to ask you if you are sure about
the change, choose OK. An emacs buffer will appear with some automatically generated lines of code,
which should look like the code in Table 5.1.

In the automatically generated code a new building block (entity) is defined by the module command
and the input and outputs are defined. The direction of the ports are defined and the ports are given
the electrical property. The module definition is finally ended by the endmodule command.

// VerilogA for tste16Lab1, tste16Lab1rcFilter, veriloga

`include "constants.vams"
`include "disciplines.vams"

module tste16Lab1rcFilter(AGND, Vin, Vout);

inout AGND;
electrical AGND;
inout Vin;
electrical Vin;
inout Vout;
electrical Vout;

endmodule

Table 5.1: Code template when creating veriloga view from scratch.

Now, in the first version, the filter should be modelled as a single pole filter. For a rapid implementation
we should implement this pole using the command laplace_zp. Further, we like to be able to move
the pole without changing the veriloga code, i.e., we like to use an instance parameter for the pole
position.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.1: Symbol view of the filter.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 17 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

A code example for the tste16Lab1RcFilter with a single pole is given by (pay special attention to
the code structure):

// VerilogA for tste16Lab1, tste16Lab1rcFilter, veriloga

`include "constants.vams"
`include "disciplines.vams"

module tste16Lab1rcFilter(AGND, Vin, Vout);
inout AGND;
electrical AGND;
inout Vin;
electrical Vin;
inout Vout;
electrical Vout;

parameter real pole1 = -100e3*2*3.1415 from (-inf:0);

analog begin

V(Vout,AGND) <+ laplace_zp(V(Vin,AGND), {},{pole1, 0});

end

endmodule

Table 5.2: Code illustrating the use of the laplace_zp command.

The variable type (real, integer, string,...) for each parameter must be declared. In this case, we
have only one parameter which indicates the pole of the filter. Notice the sign! Further, it is also
advantageous to give a default value of the parameters as well as a region which the parameter must
be within. We also have a possibility to define local parameters that can be used in the model.

The analog module is used for the large-signal behavior of the circuit. This is the core description of
the module. The analog module is typically a mathematical mapping from its input to its output. For
example:

value_quantity(node1[, node2]) <+ expression;

Here, we also have the possibility to use, e.g., if statements etc. The analog block starts with
analog begin and is ended by the end command.

In the example above we have an expression which performs Laplace transformations. It actually
states that. V(Vout), i.e., the voltage at the output node, is set to the inverse Laplace transform of the
product between the Laplace transform of the input voltage and the frequency transfer function. The zp
stands for that the two components to the right of the expression are a list of zeros and poles,
respectively. The part which is described by {pole1, 0} says that the pole is real since the imaginary
part is zero. The empty curly brackets {} says that no zeros exist.

For more information about the Laplace command please look at the reference manual. This can be
found from the Help > Cadence documentation in for example the schematic editor and then select

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 18 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

veriloga reference. There is also a lot of information available on the internet and quite often much
more accessible than from Cadence.

5.2 Setting up a Test Bench to Simulate the Filter

Any circuit must be simulated in order to validate its functionality. In this case we must check that it has
a proper transfer function. In order to do this simulation, a test bench must be designed. It should be
able to evaluate the transfer function of the filter.

Previously, we created a library with the Test extension, in our example it was tste16Lab1Test. In
that library create a schematic cellview which is called

tste16Lab1RcFilter_T

✗ It is good design practice to also let the test bench reflect the name of the cell that is tested!

The test bench should look like the one in Figure 5.3, i.e, the input to the filter is an input voltage
source while the output is loaded by a capacitor.

Start to add the instance for the filter building block by Add > Instance or by the shortkey 'i'. Fetch
the tste16Lab1RcFilter component from your tste16Lab1 design library. Use the symbol view
name - not the veriloga. Use the Browse button or type in the missing fields. Place this building block
in the test bench. Continue with the components analogLib/vsin for a sinusoidal voltage source,
analogLib/gnd for a ground potential, and the analogLib/cap for the load capacitor.

✗ Here it is good place to mention that magic Escape button. Cadence nests commands and
sometimes you will notice it does not do what you like... Probably you have an old command
call active (see bottom of the window – in the status bar). This command is canceled with the
Esc button. You will see that even experienced Cadence users hits the Escape button as a
reflex now and then.

The parameters for the components can be set directly before the components are placed in the
schematic or by selecting the building block afterwards and pressing q.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.2: Test bench for the filter.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 19 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

✗ It is good design practice to name every component in your design. For example, use the name
Cload for the capacitance, Vinput for the source, and Ifilter for the filter. The name is
changed by pressing 'q' on the component and change Instance Name.

Change the load capacitance from the default value of 1 pF to 0.1 pF. For the filter, i.e., the cell
tste16Lab1RcFilter, press 'q' and in the selection box CDF Parameter of View choose
veriloga. Now, the parameter pole1 appears in which you can specify a value or a parameter. In this
case set the parameter pole1 to the simulation variable firstPole (the pole location is given in
rad/s). You can also choose to display the settings in the schematic by using the Display selection
box.

Enter the parameters found in Table 5.3 in the sinusoidal voltage source properties window. Add labels
to the input and output wires by using the bind key 'l' (lower-case L). Tip in the name and place the
label on the wire.

Finally save the test bench and all subcells by pressing shift + y.

Parameter Value Explanation

AC magnitude 1 Using 1 V gives the transfer function at the output.

AC phase 0 The phase of the AC sinusoid in the frequency domain

DC voltage 1.65 The DC input voltage to the filter.

Amplitude 0.5 The amplitude of the sinusoidal waveform in time domain

Frequency inputFreq The frequency of the sinusoidal waveform in time domain [Hz]

Table 5.3: Input source settings for the filter test bench.

5.3 Simulating the Filter

To start the simulation environment use the menu alternative Launch > ADE L from the
tste16Lab1RcFilter_T schematic editing window. A new window called Virtuoso Analog Design
Environment (ADE) appears.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.3: Test bench for the filter.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 20 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

In this window we first get the design variables from the schematic by Variables > Copy From
Cellview. The variables show up in lower left box. Double click on them and set them to the values
found in Table 5.4.

Variable Value Unit

firstpole – 100k * 2 * 3.14159 rad/s

inputFreq 50k Hz

Table 5.4: Simulator variable settings.

Continue to add the output that you like to have from the simulation. This is done by the command
Outputs > To Be Plotted > Select On Schematic. Select the output and input nodes and end
the sequence of selection by pressing Escape. If you are selecting a wire the voltage of that wire will
be displayed, the current can be displayed by choosing a node.

Before we run the simulation, we need to choose the type of analysis. This is done by:

Analyses > Choose ...

First we add a DC analysis. Select the dc analysis button in the appearing window and tick the Save
DC Operating Point. In this case we do not like to have any type of sweep so click on the Apply
button.

To compute the small-signal transfer function an AC analysis must be performed. Select the ac
analysis button and since we like to do a frequency sweep we just enter the start frequency for
example 1 and the stop frequency at 1M and then click Apply (i.e., the input frequency is swept from 1
Hz to 1 MHz).

Before the simulation can be started we have to make sure that the cellview type veriloga is
supported for simulation. This is done by checking that the veriloga view exists in the fields Switch
View List and Stop View List in the Setup > Environment menu. Type veriloga at the end of
the list in these fields if they are not already inserted and press OK. Note, that this procedure must be
performed for every new schematic you are about to simulate.

The definition of the simulation is now complete. The simulation is started by clicking on the traffic light
with green light. Possible errors will be shown in the CIW and in a spectre.out window that also
appears. One very common cause of error is that you have not saved the schematic properly, one can
then go back and do a ctrl + y again.

Check the -3 dB bandwidth of the filter. This is done by double clicking on one of the waveforms from
the AC simulation. In the dialog box select both signals, /vIn and /vOut and select dB20 as the scale
followed by an OK. The waves are now shown in a logarithmic scale instead. Measure the -3 dB
frequency by tracking the curve with your mouse (you see the x and y values at the top of the window).
You can use markers (bind keys A and B) to ”mark” the place of -3 dB. Instead of double clicking, you
can access the dialog box from the menu Curves Edit→ in the waveform window.

What is your measured -3 dB frequency?

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 21 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Change the frequency of the first pole to 25 kHz and resimulate the circuit with a transient simulation.

What is the amplitude of the output signal?

How can you determine it from the AC
simulation results?

5.4 Analog-to-Digital Converter (ADC)
After the filter, an analog-to-digital converter (ADC) converts the analog and filtered signal into a digital
representation. We here want to design a high-level functional model of the ADC. The ADC operation
consists of two main operations: uniform sampling and quantization. In practice the analog signal does
not only need to be sampled, but also held constant after sampling in order to facilitate a quantization
that works in practice. We therefore design and model one sample-and-hold (S&H) circuit and one
quantization block (Q) to form the ADC.

We start by making a symbol for the sample-and-hold circuit. It needs one input terminal, one output
terminal, one clock terminal, and one ground terminal. Go to the library manager (alt + end) and
create a new symbol cell view named tste16Lab1SampleHold in your tste16Lab1 library. An
example of the resulting sample-and-hold symbol is shown in Figure 5.4. Terminal labels, etc., have
been added according to the instructions given when designing the filter symbol.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.4: Example of S&H symbol.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 22 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

5.4.1 Sample-and-Hold

A first behavioral-level model of the sample-and-hold circuit can now be written using veriloga. Create
a veriloga view from the symbol editor. Do not forget to select Verilog-Editor in the Tool / Data
Type submenu and change functional to veriloga. You will now have the following generated
code:

// VerilogA for tste16Lab1, tste16Lab1SampleHold, veriloga

`include "constants.vams"
`include "disciplines.vams"

module tste16Lab1SampleHold(AGND, Vin, Vout, clk);

inout AGND;
electrical AGND;
inout Vin;
electrical Vin;
inout Vout;
electrical Vout;
inout clk;

electrical clk;

endmodule

The sample-and-hold circuit will be triggered by a clock signal (clk). It is common that the sample-and-
hold output signal is either following the input signal (track-mode) or holding a previously sampled
value (hold-mode). This depends on the length of the hold phase. Certain architectures, like for
example switched-capacitor based S&H circuits have no tracking phase and therefore hold the
sampled value until a new one is acquired. This latter approach is what we choose to model here.

Let a rising clock edge define the acquisition of a new sample value. In veriloga, this can be done by
comparing the clock signal with a threshold level. Add a real parameter called clkThreshold with
nominal value 1.65, and with values restricted to the open interval (0, inf). This is the threshold
level equal to half the power supply voltage, 3.3 V. Then define a local variable, vOutTemp, that stores
the sampled signal values. The sampling instant can now be defined by

@(cross(V(clk,AGND) - clkThreshold,1))
begin

vOutTemp = V(Vin,AGND);
end

V(Vout,AGND) <+ vOutTemp;

The statement @(cross(V(clk,AGND) - clkThreshold,1)) detects when the voltage between the
two terminals clk and AGND, i.e., V(clk,AGND), becomes larger than clkThreshold on a rising edge
(hence the 1). In that case, vOutTemp stores the input voltage. Finally, let the output voltage be
assigned to the value of vOutTemp.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 23 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

✗ Tip! Look through the ahdlLib in your library manager for more examples on parameter
definitions as well as assignment syntaxes.

A basic veriloga description of a sample-and-hold circuit is now ready to be incorporated with the RC
filter. Create a new test bench, i.e., a schematic cell view in the tste16Lab1Test library, called
tste16Lab1RcFilterSH_T. Add an instance of your filter and one of the sample-and-hold. Name
them during this operation too.

Further, add a sinusoidal input voltage source and a capacitor at the output of the sample-and-hold.
Also add a pulse source, vpulse, from analogLib which needs to be grounded and connect it to the
CLK terminal of the tste16Lab1SampleHold symbol. In the object property list of the pulse source, let
Voltage 1 equal 3.3 V, Voltage 2 equal 0 V, and add two new parameters, clkPeriod and
tRiseFall, which are the clock period and the rise and fall time of the clock pulse. Let Rise Time
and Fall Time be equal to tRiseFall, Period equal to clkPeriod, and Pulse Width equal to
clkPeriod/2. Connect the sample-and-hold symbol between the filter and the load capacitor.

It is now time to simulate the filter and sample-and-hold circuit. Open the ADE, perform a transient
analysis and study the sampled-and-held output signal. Let the clock period be one tenth of the input
signal period and the rise/fall time be one tenth of the clock period. Choose a reasonably long
simulation time. Compare the output waveform with the input and make sure that you understand the
operation of the S&H circuit.

5.4.2 Four-bit Quantizer

In order to obtain a digital representation of the sampled data, the amplitude needs to be quantized.
Hence, the sampled-and-held data is represented with an N-bit binary number. We will here consider a
so called flash ADC, which is conceptually the simplest ADC architecture. In an N-bit flash ADC, the
quantization of the input is carried out by comparing the input with 2N−1 (ideally equally spaced)
different reference levels. A symbol for a 4-bit quantizer is shown in Figure 5.5.

We here consider a relatively small (few quantization levels) flash ADC which is typically used in a so
called pipelined ADC architecture. The pipelined ADC is not discussed further in this laboratory.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.5: Example of a quantizer symbol.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 24 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Start with creating a symbol cell view named tste16Lab1Quantizer like the one shown in Figure 5.5.
Then create a veriloga view. A 4-bit converter requires 15 different reference levels. In the behavioral-
level description, it can be useful to declare local variables for the reference levels and the output. The
variable holding the reference levels, qLevel[], can be defined as a 16 bit wide vector where each bit
of the vector can be assigned as e.g.,

//Reference levels

qLevel[15] = vMin+15*vRef/16.0;
qLevel[14] = vMin+14*vRef/16.0;
qLevel[13] = vMin+13*vRef/16.0;

qLevel[1] = vMin+1*vRef/16.0;
qLevel[0] = vMin+0*vRef/16.0;

//Output
real output[3]=0; output[2]=0; output[1]=0; output[0]=0;

vMin is the minimum input signal level and vRef is the input signal range. Note that the lowest index of
the arrays defined above is 0. Hence, the first element of qLevel is accessed with qLevel[0] and the
last element with qLevel[15]. The output[] vector is the quantized digital output (binary offset). The
vector assignment can of cource be done with a for loop as well, e.g.,

//Reference levels

integer i;
for (i = 0; i < 16; i = i +1)

begin
qLevel[i] = vMin+i*vRef/16.0;

end

In the quantization process, the input should be compared with the reference levels. This can be done
with a set of if statements, e.g.,

if ((V(vIn, AGND) >= qLevel[10]) && (V(vIn,AGND) < qLevel[11])
begin

output[3] = 1;
output[2] = 0;
output[1] = 1;
output[0] = 0;

end

Finally, we need to assign the output voltages their proper values, e.g.,

V(D0) <+ vLow*(1 - output[0]) + vHigh*(output[0]);

where vLow and vHigh are the voltage levels (parameters) of the output data 0 and 1, respectively.
The assignment above results in non-continuous output voltage wave-form. If a more practical output
signal format is desired, non-zero transition times can be incorporated as

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 25 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

V(D0) <+ transition(vLow*(1-output[0])+vHigh*(output[0]),td,tr,tf);

where td is the delay time, tr is the rise time, and tf is the fall time of the output data.

✗ Tip! For debugging purposes the $strobe command can be used. The $strobe command can
for example return parameter values during simulation.

✗ Tip! In order to reduce computational load during simulation ,the @(initial_step) command can
be used. This command tells the simulator only to compute the following section, enclosed by
begin and end, once at startup, and not every time the module is accessed.

The veriloga describing the 4-bit quantizer could now look something like the snippet below. Notice that
this is just an example and several ways can be used.

// VerilogA for tste16Lab1, tste16Lab1Quantizer, veriloga

`include "constants.vams"
`include "disciplines.vams"

module tste16Lab1Quantizer(AGND, D0, D1, D2, D3, vIn);

inout AGND;
electrical AGND;

etc.. (the rest of the port declarations)

parameter real vLow = 0 from [0:inf);
parameter real vHigh = 3.3 from [0:inf);

etc … (the rest of the parameters)

// Reference levels
real qLevel[15:0];

// Output
real digitalOut[3:0];

// Loop variable
integer i;

analog begin
@(initial_step) begin

for (i = 0; i < 16; i = i +1)
begin
 qLevel[i] = vMin+i*vRef/16.0;
end

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 26 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

 $strobe("=============== The value of qLevel15 is %g", qLevel[15]);
 $strobe("=============== The value of qLevel3 is %g", qLevel[3]);
 $strobe("==================== The value of vMin is %g", vMin);

end // initial_step

if ((V(vIn,AGND) >= qLevel[0]) && (V(vIn,AGND) < qLevel[1]))
begin

digitalOut[3] = 0; digitalOut[2] = 0; digitalOut[1] = 0;
digitalOut[0] = 0;

end

etc … (the rest of the if statemets)

// Assigning the digital outputs

V(D0) <+ transition(vLow * (1-digitalOut[0]) + vHigh *
(digitalOut[0]),td,tr,tf);
V(D1) <+ transition(vLow * (1-digitalOut[1]) + vHigh *
(digitalOut[1]),td,tr,tf);
V(D2) <+ transition(vLow * (1-digitalOut[2]) + vHigh *
(digitalOut[2]),td,tr,tf);
V(D3) <+ transition(vLow * (1-digitalOut[3]) + vHigh *
(digitalOut[3]),td,tr,tf);

end // analog
endmodule

5.4.3 Combining Quantizer and ADC

Before we continue to simulation we shall create the ADC too. Create a new cell in your design library, this
time however, you shall start with a schematic view instead. Call the cell tste16Lab1Adc. The view is
obviously very similar to a test bench.

Instantiate your sample-and-hold (tste16Lab1SampleHold) and your four-bit quantizer
(tste16Lab1Quantizer) in the cell view and name them properly. Connect the output of the S&H to the
input of the quantizer and name the net to something understandable. Then we need to add pins as terminals
to the ADC. Press the bind key 'p' to get a pop-up window in which you can fill in the following pins:

vIn CLK AGND D0 D1 D2 D3
vIn and CLK should be input, AGND inputOutput and the rest should be output. The resulting output should
look something like the one in figure 5.6. In order to increase readability and understanding of the block, we
have also added a so called sheet to the cell view (daisy: daisySheet). Further on, you can also add text
information (shift + L) and add comments to your schematic.

✗ It is good design practice to add history comments to your schematic - especially if you work in
groups. Add for example texts like: “Added another capacitor, Sept 3, 09. /JJW” or similar.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 27 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Now also create the symbol. Use Design > Create Cellview > From Cellview ... from the menu
system in the window. Confirm that Tool / Data Type is Composer-Symbol and then OK the form. You
will now actually get a predefined symbol to work with. You can alter the pins, etc., if you want a “prettier”
symbol. Check and save everything.

5.5 Setting up a Test Bench for the Whole Filter and ADC Chain

In this part we are about to simulate the system that we have designed so far. Further, the simulations
performed in the Cadence environment should also be exported to matlab/octave to be able to
calculate the output spectrum of the transient signals. This can actually be performed in the Cadence
environment as well, but we will export the data to matlab/octave since those tools can be used for
implementing the digital signal processing later on in the project. It is also used to estimate the signal-
to-noise ratio (SNR) which can otherwise be difficult to do using Cadence.

The first step is to set up the test bench for the filter and ADC chain. First, create the schematic
cellview tste16Lab1Top_T in the tste16Lab1Test library. Add the symbols of your components
tste16Lab1RcFilter and tste16Lab1Adc from the tste16Lab1 library. Further, include a
sinusoidal voltage source (analogLib, vsin) and the analog ground (analogLib, gnd or
ctrl+shit+g). Also include the output file writer (daisy, daisyFileWriter) which writes the
simulation data to a MATLAB/octave compatible file. A clock signal is required which in this case is
chosen as a pulse voltage source (analogLib, vpulse). Use the following values on the vpulse
device.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.6: Example of the ADC using the combined S&H and quantizer.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 28 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Parameter Value Explanation

AC magnitude 0 V No AC variations

AC phase 0 The phase of the AC sinusoid.

DC voltage 0 The DC voltage of the clock is zero.

Voltage 1 3.3 V Start voltage for the pulse in the transient analysis.

Voltage 2 0 V Second voltage for the pulse in the transient analysis.

Delay time 0 Delay from start of simulation.

Rise time tRiseFall Rise time from voltage 1 to voltage 2.

Fall time tRiseFall Fall time from voltage 2 to voltage 1.

Pulse width clkPeriod/2 The width of the pulse (time it will be 0 V)

Period clkPeriod Time between repetition of the sequence.

Table 5.5: Settings for the pulse source.

The test bench should look like in Figure 5.7. Note that all nodes with the same name are connected,
and thereby the clock signal (vClk) is connected to the daisyFileWriter too.

In the block daisyFileWriter, the output file name (use double quotes for the name: “ filename ” if
you want to change the default name) and path can be specified. The digital data is then written to that
file, which can be loaded into Matlab/octave for further processing and analysis.

The daisyFileWriter block has a 16-bit wide input bus vIn<15:0>. Connect your digital data
outputs, {D0 D1 D2 D3}, to the lowest bits in this vector. The remaining bits should be connected to
ground.

✗ Cadence does not allow that multiple input signals are connected together and shorted to
ground, therefore each input should be connected to ground via small resistor. This can be
done using some simple index/bus notations.
1. Insert a resistor, set the Instance Name to e.g., Ires<11:0> to instantiate 12 resistor units.
2. Connect the resistors to a gnd cell with Instance Name, e.g., Ignd<11:0>
3. You can now connect a 12-bit wide bus to the resistor. Each bus member will now have a
separate ground connection to ground.

In the test bench above an analog sinusoidal input signal is filtered, sampled and quantized. The
quantization is successfully modeled by the introduction of uncorrelated noise. For sinusoidal input
signals, however, the signal frequency should not be chosen as a rational factor times the sampling
frequency. Otherwise, the quantization error can not be modeled as uncorrelated noise. A so called
coherent sampling should be used.

We will now estimate the signal-to-noise ratio (SNR) from the data written to the file. The m-file
daisyEstAdcSnr.m (from $WORKAREA/daisy/m) estimates the SNR as outlined in Chapter 1.6 in the
Mixed-Signal Processing Systems course book.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 29 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Start Matlab/octave and estimate the SNR from the simulated data. You will need to check that you
apply the correct value for WkT = 2*pi*f0/fsample, where f0 is the signal frequency and fsample
is the sampling frequency. Make sure you simulate to produce at least a few hundreds of samples.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 5.7: Test bench for the filter and ADC chain.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 30 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

6. REFINING THE FILTER IMPLEMENTATION

A first model of the system is now complete and we are now continuing to refine the models of the indi-
vidual building blocks. First we are going to start to refine the filter building block. In the first imple-
mentation only a mathematical mapping is used to realize the filtering function. However, we are now
moving towards a description which is more close to a possible implementation. In this case we should
implement the filtering function using an amplifier (analogLib > vcvs), a resistor (analogLib >
res), and a capacitor (analogLib > cap). The implementation should look like the one shown in
figure 6.1. Once again notice that we have added more comments (shift + L) and shapes (n) to
improve the readability of our schematics for other project members to read. Components have been
named properly so that we can read the netlistst easier, etc.

The amplifier is a voltage controlled voltage source (vcvs) and it amplifies the signal, Vint – AGND,
A0 times to the output between Vout and AGND. For the amplifier set the gain equal to the variable A0.
The resistance of the resistor should be filterR and the capacitance of the capacitor filterC. Save
the schematic view (shift + y).

Assume that the amplifier does not load the resistor and capacitor. Compute the transfer function from
the input to the internal node, vInt. The amplifier does not load the resistor and capacitor, but it has a
gain of A0.

Compute the transfer function
from Vin to vInt:

Compute the transfer function
from Vin to Vout:

Calculate filterR and filterC
so that the pole is placed at
-100 kHz

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 6.1: Schematic-level model of the (active) filter.

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 31 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

7. USING THE HIERARCHY EDITOR

Now we will start using the hierarchy editor in order to facilitate the use of different block descriptions in
the filter and ADC chain. The hierarchy editor enables us to select which view we want to use for each
and everyone of the different blocks in our test bench. Therefore, one can easily choose which model
or level of abstraction that should be used when simulating the whole system. For example, we can
simulate the ADC with a behaioral-level description and use a much more accurate description of the
filtering block than the high-level model (and vice versa).

The hierarchy editor is started by creating a new cell view for the tste16Lab1Top_T called config.
(Notice that the Tool field changes to Hierarchy-Editor if you type config in the View Name field.
The hierarchy editor appears and since this now is a new cell view, we need to define the top cell of
our design. In this case we verify that it says Library: tste16Lab1, Cell: tste16Lab1Top_T, and
then we enter View: schematic. Press Use Template and select Spectre. Add veriloga to the
Stop List.

Check that your window look similar to the one in Figure 7.1 before pressing OK. (Notice again, that
Cadence 6.x looks a bit different, but contents in the fields are the same).

In the Cell Bindings you can see which cell views that are used during the simulations. For
example, you can change the cell view tste16Lab1/ tste16Lab1RcFilter/ schematic to
tste16Lab1RcFilter/ tste16Lab1RcFilter/ veriloga by clicking on the right mouse button on
that row. A pop-up menu appears in which you should select Set Cell View and choose veriloga.
After each time you have made a change update the hierarchy editor by View > Update or ctrl + u.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 7.1: Configuration window for the hierarchy editor

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 32 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

Save and close the hierarchy editor and go to the library manager and double click on the config view
of tste16Lab1Top_T. A dialog box appears where you should tick yes to both questions. Both the
hierarchy editor and the top cell view schematic windows are now displayed.

The simulation can be performed in the same way as before, eventhough you are using the config
cell view instead of a schematic cell view. Depending on the settings in the hierarchy editor, different
descriptions of the building blocks will now be used and netlisted by the simulator.

7.1 Simulating the Filter and ADC Chain With Different Filter Descriptions

We are now about to compare the simulation results for the two different implementations of the RC
filter. In the hierarchy editor make sure that the view for the tste16Lab1RcFilter still is veriloga.
Set the value of the first pole of the filter equal to 100 kHz. Simulate the circuit using the ADE and
check the transient signal at the output of the tste16Lab1RcFilter. Make sure to simulate some
periods of the input signal.

We should now compare this simulation with a simulation using the schematic description of the RC
filter. First, we need to store the waveform for the current simulation. This is done by the menu
alternative Window > Subwindows in the Waveform window. Select the transient response and press
the Disable Results Update button. This analysis will not be updated for the coming simulations
until this window is closed. Hence, only minimize this window.

Change the cell view used for simulation for the tste16Lab1RcFilter to schematic in the hierarchy
editor (right mouse button, etc.), update the definitions (ctrl + u) and save the hierarchy description.
Copy variables for the test bench into the simulator window and add appropriate values to the filterR
and filterC variables and set A0 to unity. (If the variables do not appear in the ADE check that you
have changed the view, updated, and saved in the hierarchy editor. Sometimes one can run a dummy
simulation to get the variables into the window.). Run the simulation and make sure that the pole for
this implementation has been placed at (-)100 kHz. Compare the two simulation (you can change the
color of the waveforms by double clicking on the waveforms and changing the color property. Use
drag-and-drop for moving one of the curves on top of the other.).

Comments on the simulated results

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

No Rev Date Repo/Course Page
0001 B 2011-09-07 MSPS 33 of 33
Title Introduction to Behavioral-Level Simulation ID jacwi50

8. WRAP-UP

In this laboratory we have used the Cadence design environment to design a filter and ADC chain. We
have also incorporated a top-down design methodology where we start to describe our circuits using a
model and further on refining the model towards a real implementation using physical components.
Here, we have used two descriptions of the filter implementation and only one for the ADC
(S&H/Quantizer). However, typically several levels of abstraction are used. The continuation of the
laboratory for a real chip implementation would for the filter part be to realize the unity-gain amplifier,
using e.g. an operational amplifier. This amplifier can also be described by a number of different
models, etc. The two last models for the implementation of a real integrated circuit would be a
transistor-level implementation of the amplifier and its corresponding layout level description.

Coming back to the laboratory design task, we can see that your implementation can be viewed as
shown in Figure. For example, the first model of the filter and ADC chain is in this case the
mathematical descriptions shown in the second row of the diagramme. This mathematical description
of the filter can be replaced by the model consisting of an ideal resistor, capacitor, and amplifier
illustrated by the third row in the diagramme. By iteratively simulating both model one and two (and
onwards), the impact of the model refinement can be seen and understood. This procedure has been
illustrated by Figure 8.1. This is one of the advantages with the top-down design procedure.

This document is released by Electronics Systems, and repository refers to Electronics Systems, Dep't of E.E., Linköping University Print Date: 09/07/11, 09:14

Figure 8.1: The top-down description of the filter and ADC chain. All descriptions in the leaves can be further refined as
illustrated by the dashed lines for the amplifier.

