Written Test TSTE80, Analog and Discrete-time Integrated Circuits

Date:	August 10, 2006
Time:	14-18
Place:	TER2
Max.no. of points:	25
Grades:	10p for 3, 15p for 4, and 20p for 5.
Allowed material:	All types of calcuclators except laptops. All types of official tables and handbooks. Textbooks: Johns & Martin: Analog Integrated Circuit Design. Razavi: Design of Analog CMOS Integrated Circuits. Sedra&Smith: Microelectronic Circuits. Dictionaries.
Examiner:	Sune Söderkvist
Responsible teacher:	Sune Söderkvist. Tel.: 281355.
Corrrect (?) solutions:	Solutions and results will be displayed in House B, entrance 25-27, ground floor.

Graded exams are returned on examinator's office times, tuesdays and fridays at 11.00-13.00 from week no. 34

Students instructions

- The CMOS transistor operation regions, small-signal parameters, and noise characteristics are found on the last page of this exam.
- Generally, do not just answer yes or no to a short question. You always have to answer with figures, formulas etc., otherwise no or fewer points will be given.
- You may write down your answers in Swedish or English.

For students who has studied earlier variants of the course :

The conditions for the test is the same as before, i.e. every problem gives max. 8 points and you get credits for project and assignments as before. Mark 3 require 30 p totalt, mark 4 require 42 p and mark 5 require 56 p. Please, tell me on the wrapper if this is of interest.

Good Luck!

Exercise 1.

The circuit in **Figure 1** is used to establish an appropriate bias voltage V_{bias} to an operational amplifier. The transistors have following parameter values:

	N-kanal	P-kanal
V_{t0} [V]	0.47	0.62
$\mu_0 C_{ox} [muA/V^2]$	180	58.5
$\lambda [V^{-1}]$	0.03	0.05
γ [V ^{1/2}]	0.62	0.41
ϕ_F [V]	0.43	0.41

a) Show that all transistors are saturated in this circuit.

(1.5p)

b) Determine $\frac{W}{L}|_i$, i = 1, 2, 3, for transistors Mi, i = 1, 2, 3, if $V_{DD} = 3.3$ V, $V_{bias} = 0.6$ V and $I_D = 5 \mu$ A.

If the potential V_x is just above 2.05 V it shows that $\frac{W}{L}|_2 = \frac{W}{L}|_1$. Choose $V_x = 2.05$ V here.

Do not neglect the bulk effekt neither the channel-length modulation. (3.5p)

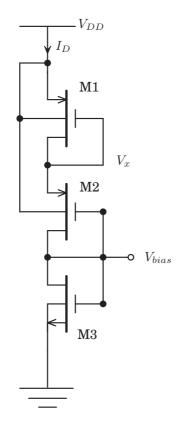


Figure 1: A bias circuit.

Exercise 2.

Sketch a small-signal equivalent circuit and determine the input resistans r_{in} and the output resistans r_{out} for the wide-swing current mirror in **Figure 2**. All transistors are biased to operate in the saturation region. Assume that the transistors small-signal parameters are $g_{m1}, g_{ds1}, g_{m2}, g_{ds2}$ and g_{m3}, g_{ds3} respectively. (5p)

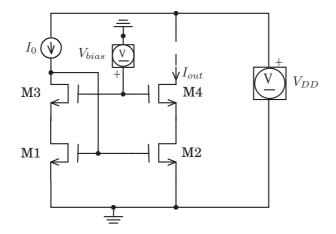


Figure 2: A wide swing current mirror.

Exercise 3.

A switched capacitor circuit in clock phase 1 is shown in **Figure 3**. The value of V_{in} changes only at time $t, t + 2\tau, t + 4\tau$, and so on, i.e., $V_{in}(t) = V_{in}(t + \tau)$.

- a) Express the output voltage, $V_{out}(z)$, as a function of the input voltage, $V_{in}(z)$, for clock phase 1. Assume that the operational amplifier is ideal and that $C_3 = 2C_1$. (4p)
- b) Is the circuit insensitive to capacitive parasitics? Motivate your answer carefully. (1p)

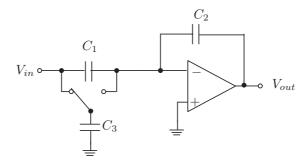


Figure 3: A switched-capacitor circuit in clock phase 1.

Exercise 4.

Figur 4 shows a simplified small-signal model of an OTA, including a compensation capacitor C.

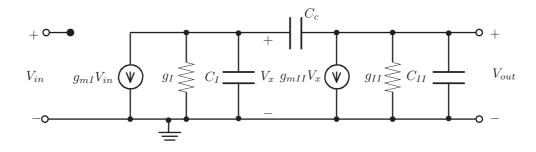


Figure 4: A small-signal model of a two-stage OTA.

- a) Derive an expression for the transfer function $H(s) = V_{out}/V_{in}$. (3p)
- b) Determine an approximation of H(s) assuming that $g_{mII} >> g_I$, $g_{mII} >> g_{II}$, $g_{mII} >> g_I$, and also that $C_c >> C_I$ and $C_{II} >> C_I$. Also assume that C_{II} and C_c is of the same order.

Determine DC gain A_0 , poles and zeros and also an approximation of unity-gain frequency ω_u , from this approximation assuming that the poles are well separated $(|p_2| >> |p_1|)$. (2p)

Exercise 5.

Consider the two cascaded common-cource stages in **Figure 5**, where only the thermal noise generated in the transistors is of interest. The current sources are ideal and hence noiseless. Let the output load capacitance be given by C_L and parasitic capacitanses are only given by gate-source capacitances, C_{gs} . Further $I_{bias1} = I_{bias2} = I_{bias}$. The transistors are identical with the small signal parameters $g_{m1} = g_{m2} = g_m$ and $g_{ds1} = g_{ds2} = g_{ds}$. Both transistors operate in the saturation region.

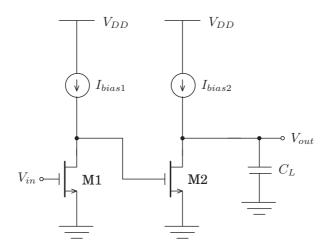


Figure 5: A noisy multi-stage amplifier.

- a) Determine an expression for the spectral density R_{out} of the output thermal noise assuming that the noise from the transistors are uncorrelated. (2p)
- b) Assume that $C_L >> C_{gs}$ and derive an approximation for the total output noise power $P_{out,noise}$ using the noise-bandwidth concept. (Express $P_{out,noise}$ in small signal parameters, in C_L and in constants.) (2p)
- c) Express P_{out,noise} in I_{bias} and answer following questions. (Motivate!) How to change I_{bias} if you want to decreas P_{out,noise}? How will that affect the DC-gain of the circuit? (1p)

Transistor formulas and noise

1 CMOS transistors

Current and threshold voltage formulas and operating regions for an NMOS transistor

Cut-off:	$V_{GS} < V_{tn}$	$I_D \approx 0$	
Linear:	$0 < V_{DS} < V_{eff}$	$I_D \approx \alpha (2V_{eff} - V_{DS}) V_{DS}$	
Saturation:	$V_{DS} > V_{eff}$	$I_D \approx \alpha V_{eff}^2 (1 + \lambda (V_{DS} - V_{eff}))$	
All regions:	$V_{tn} = V_{t0n} + \gamma (\sqrt{2\phi_F - V_{BS}} - \sqrt{2\phi_F})$		
	$V_{eff} = V_{GS} - V_{tn}$		

Small-signal parameters

Constants: $\alpha = \frac{1}{2}\mu_{0n}C_{ox}\frac{W}{L}$ $\lambda = \sqrt{\frac{2K_s\epsilon_0}{qN_A\phi_0}}\cdot\frac{1}{L}$ $\gamma = \frac{\sqrt{2qN_AK_s\epsilon_0}}{C_{ox}}$

2 Circuit noise

Thermal noise in CMOS transistors

The thermal noise spectral density at the gate of a CMOS transistor is

$$\frac{\overline{v^2}}{\Delta f} = \frac{8kT}{3} \cdot \frac{1}{g_m}$$

Thermal noise in resistors

The thermal noise spectral density of a resistor is modeled as a parallel noise current source

$$\frac{\bar{i^2}}{\Delta f} = \frac{4kT}{R}$$

Flicker noise in CMOS transistors

The flicker noise spectral density at the gate of a CMOS transistor is

$$\frac{\bar{v^2}}{\Delta f} = \frac{K}{WLC_{ox}f}$$