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and contemplate how the bilinear function of Eq. (3.66), multiplied, of course, by —1, can be
realized by the circuit in Fig. 3.23,

i

Z ¥ .
T(S)zm_%_m__}.:wKS_le

) s+pi (3.68)
VA Y2 5+ pr

The problem to be considered may be formulated in terms of this equation, We assume
that the specifications of the design problem are the values K, z;, and p;. These may
he found from a Bode plot—the break frequencies and the gain at some frequency—or
obtained in any other convenient way. The solution to the design problem involves finding
a circuit and the elements in that circuit. We will-assume that inductors are excluded from our
considerations. Hence we need to find the values of the Rs and Cs and their interconnections.
Once the componenis are found, they are adjusted by appropriate frequency scaling and
impedance-level scaling as discussed in Chapter 1, Section 4, to obtain convenient ¢lement
values. Finally, the components may be tuned as necessary to realize the prescribed behavior
exactly.

The procedure we will follow requires that some parts of the prescribed right-hand side
of Eq. (3.68) be assigned to ¥; and ¥,. The assignments are not unique, resulting in several
different design strategies and circuits. Since inductors are excluded, we must avoid making
the identifications ¥ = 1/(sL) or Z = sL. One of several possibilities that suggests itself is
to make the admittances linear functions of frequency,

Yi=5C1+G; and Yo=sCy+ Gy

o give

Fe Bl SGHG | GstGYG
£ sCy + G Cy 5+ G2/ Cy

tom which we can identify

_Gz_ .
I_CZ_CZRZ,

Figure 3.24 Active circuit real-
izing the bilinear function of Eq.
(3.70).
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1
T 27 x 13,0005 x G,

Ry =3.458 kQ

We see that at the origin T(0) = —R;/R; = —0.901 and at high frequencies T (o0) =
—C3/Cy = —14.125. The circuit, an (inverting) highpass filter, is shown in Fig. 3.25a.

A comment is appropriate at this point concerning the problems we pointed out at the
end of Section 3.2. Observe first that the filter in Fig. 3.23 can be loaded without affecting the
transfer function in any substantial way because of the low (ideally zero) output impedance of
the opamp. Second, as mentioned, it is clear from Eq. (3.70) that pole and zero can be adjusted
independently. Since the zero is provided by ¥; = 1/7; and the pole is given by ¥» = 1/Z3,
varying the zero by Ry or C; will not affect the pole and, conversely, varying Ry or C; will not
change the zero. Finally, apart from being on the negative real axis, there are no restrictions
on the pole or zero locations. For instance, we may choose and C; = Ry = 0 to obtain the
circuit in Fig. 3.26a. It realizes

Y 1
T(s)=—3 = ——— _ (3.75)
. Y2 SCgRl

This is an inverting ideal integrator, a function that could not have been realized with only

.- passive elements. Its attenuation can be written as

a{w) =20 log|T (jw)| = —20 log (wt) = —20 log (%) (3.76)

‘where T == C,R, is the integrator time constant, and the phase is 0(w) = 180° — 90°.
it this equation, 180° arises from the minus sign in Eq. (3.75) and the integration itself,
/457), contributes —90°. Figure 3.27a shows a Bode plot of the integrator magnitude with its
reakpoint 1 /t. We will find integration, and therefore the ideal integrator, to be very important
md fundamental in the design of active filters. A separate section, Section 4.4, will be devoted
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1RST-ORDER FILTERS: BILINEAR TRANSFER FUNCTIONS AND FREQUENCY RESPONSE

o) '
The transfer functi
ction of the circuit was gi
as given in BEgs. (3.72)
.(3.72) and (3.73):

a(m)
s+ 2 x 830 Hz

s+ 2m x 13000 Hz

T(s) = —14.125
(3.82)

420 dB per decade

_20 dB per decade
-

1
log

log G
Usi .
sing no scaling, we obtain directly with Eq. (3.81)

@ , ®
vigure 3.27 Bode plot of the magnitude of (a) an ideal integrator (note: o is infinite at & = 0) and R
(b) an ideal djfferentiator. : R, = 14.125, =27 % 83

Co R, OHz, and — 27 % 13 ki
£ we accept 2 minus sign for an inverting differentiator,'the function i8 readily implemen Choosing C; = 10 nF = 0.01 uF ' CiR, z (3.83)
by the ¢l cuit in Fig. 3.24 with Ri=C2= 0 as shown in Fig. 3.26b. It realizes .01 T, results in the components

. R = 5 1
i =1.
< ionE ~ [2HAK2 R = 14125R, = 17.289kQ
Oy = 1
37 % 830 Hz x 17.289 k& = 11.09nF

V: C
T(s)= ﬁ = -JSrC—;—;* — —sCyRy = 57
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3.4.2 Noninverting Opamp Circuits

Recalling our discussions from Chapter 2, we seek to utilize the noninverting amplifier of

Fig. 2.11a with resistors replaced by impedances. This circuit is shown in Fig. 3.30. By direct
analysis, or by analogy with Eq. (2.34), we obtain its transfer function as

Vo Zs 1

LG i Il .

v, (+Zl)1+ T (.7 (3.86)
A(S) Z]

Again we have shown the dependence on A(s) because we must be mindful of its effect. For

now let us assume the ideal case, A(s) = oo, and consider the design possibilities of the
- fonction

. .. H ﬁ :

¢ the origin and at 1o v :

3 |1 pO].CS, and zetos & . Vs Zs Yi s + 71

. . has two negative real B 7 ) x ‘ T = ==14+=—0-=14+—=K— . 3.87

realized Eque}u?l? ?c;’? Zagandpass as itiustrated 0 Fi gs-?fgzo;iiccarefuny. 1t is not usefi L ) V1 VA ¥, eas + m Sl

The function 18 tha . . ircuit in Fig. 3. L : rigin an - o )

It js interesting 0 investigate Elf) :.n ds =00 would imply infinite gain attﬂsle-? Ogé i . In Eg. (3.87) we have temporarily introduced the two coefficients e, and ey in the numerator
because the (ﬂleoretical) polesat s = ¢ suggested by Ea. (3.85h), we DO@ t‘_natg comnec : and the denominator. Both coefficients will be equal to either 1 or 0, depending on whether
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Figure 3.29 Two alternative fitter structares.

€38 + p1

As for the inverting-amplifier case, we recognize several possibilities: we assume normalized
and scaled components and identify them by the subscript n. We may then set

{3.89a)

'th_at would Tead us to inductances. Rather, we use the step of dividing nymerator and
itor by s to obtain

itor o circuits at do,
3. both the opamp input and the capacitor Cq are Ope
Since bo .
through Ri.
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possibility of loading a circuit without destroying the designed transfer function is a major
benefit of active realizations. This advantage will come therefore 1o good use in the design of
higher-order filters. For example, in the phase shifting network of Example 3.8, Fig. 3 38, the
cascade connection causes no problems because the output impedance of the left amplifier s
smaif compared io the input impedance of the following stage.

We are now prepared to introduce some aspects of circuit design that will be amplified
throughout the book, We do this in terms of some of the circuits analyzed earlier in this
and in previous chapters, and we will make use of what we tearned about opamp behavior.
The design procedure may be sumnmarized in the following steps:

Specification  Some aspects of the required magnitude or phase response must be given along
the frequency axis so that poles and zeros, t.e., the transfer function, can be identified. For
example. if we describe filter requirements by a Bode plot, the break frequencies permit
us o locate poles and zeros by a graphic trial-and-error procedure. We shall discass in
subsequent chapters a more rigorous mathematical process that provides the poles and
zeros needed for the design without trial and error.

Requirement  We require the complete circull with element values in & praciical range,
consistent witl: the technology chosen.

FProcedure  The following steps are suggested:

1. Proceed from the specifications to determine the ransfer function with its pole and
zero locations. Poles and zeros are always needed before proceeding with filter de-
SIgM.

o

- Select a circuit that promises to be able to satis{ly the required magnitude or phase
variation with frequency.

3. Use scaling and normalization, if desired, o reduce pole and zero locations o smail
aumbers of the order on unity {eliminating high positive or negative powers of 10} and
to be able to deal with dimensioniess numbers for the components.

4. Determine the element values from the values of the poles and zeros.

3. 1f scaling was used, invert Step 3 to arrive at suitable practical component values.

6, Since a design problem never has a unique solution, investigate whether other circuit
solutions exist that may be better suited to practical implementation in teems of
component use, power consumption, or other factors.

The student may want to review some of the examples presented earlier in light of the six steps.
A number of additional examples to point out vasious aspects of the design process foliow.

that of a bandstop filter. There is no loss at high and low frequencies, but 20 dB attenuation
provided in the intermediate range 1000 rad/s < @ = W00 rad/s.
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With experience it wil

possibility is

secticn

T(s)=

Bode plot, bypassing the interme
We next write T{s} as a pro

\w\;adj's {log scale}

The composite plot may be decomposed inta four first-
Those marked 1 and 4 represent poles, whereas those marke

ety accounts for the possibility of a freque
frequencies and the 20-dB/decade slopes, we see that

T (o) =K

Written in this form, it is clearly seen that w
that the low-freqaency value of a (i) = oty = Od
s for je in Eq. (3.128) gives us the transfer function

Far a circuit realization of T; and Ty,
Fig. 3.24. Using the formulas for element values give in Eq. {3.71

~,
.

: alw) = oy — a5 {w) + walw) + asle) — cs(w)

(1 + jew/10%) (1 + jw/10%)

(1+ jw/10P) (1 + joo/107)

(s +10°) {s + 10%)
(s +10%) (s + 107)

I be possible to write 7'(s) in this form directly 1

diate steps.
duct of bilinear functions. The choice is

s+ 10

T(s) = Ti(s)Ta{s) = —ss X - .
() = @Dl s+ 100 s+107

order factors as shown in Fig
d 2 and 3 are zero factor

ney-independent gain constant. From the’

hen w = 0, T(j0) = K. From
B, so that by Eg. (2.26), K=

we next decide to use the invert
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., 1
2y aE—E; = 1000 rad/s  and A = 100 rad/s
and for the second section
S 10,000 rad/s and - = 10
. CaRips rad/s  and ok = 100, 004 rad/s

it 18 Corivenien O bs k - . -
- Se { H (4 {)f ¢ 4
” O{ 3‘ erifent o (.,}i ¥8e 4 l CZP(}L1§ T8 thﬂ same ﬁ-aiufﬁ:. lét us S@)fbci (: 0 (31 ﬂ,I }..11613

: I

Re; el . 3
| = 100 kQ Ry =
1000 rad/s = 0.01 pF R = o radrs X 00T = | M®
. . } V
Ry == e
10,000 rad/s % 0.01 o = (0K and Ron = : ke

100,000 rad /s x 0.01 gF

The element values that result are shown in Fig, 3.464 and the design is complete. A cha
18 . F-

L. agcteristic of desi agal ; i

. Actene 2fdes}gn_m§§ again t?ecomes apparent 1s that there is no upigque solution. If, ¢

gy :znd, é}main dr_e;:.stur sizes in Fig, 3.46a is too large, then we begin the design précéis!a fﬂ
1 é 5 I8 " . k h '
. btain a different resule. This process may be repeated several times unitl a satis :
_solution is obtained. ' " e

.. To consider the effect of a real opamp on the transfer function of Eq. (3.136) we insert the

- . specified poles and zeros of the two sections into Eq. (3.111):

1) = — 5+ 10°
25“{?{(1}{ -+ 5 (I -+ HO@/());) -+ 1{}{)
T(s) = — s -+ 10°
257w 5 (1+ 11 % 10 /) + 10° G130
~EE
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E-i(—)ﬂ §2 1 MG 10 kL | .
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Ciicuit realizing Eq. (3.128) of
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possibility of gain and also that the associated circuit may be inverting of aoninverting. Such
2 transfer function is

ol
4+ Hwg

S s (e (4175
4 (wy/ Qs + @y

Tis)=

and can be represented by the block diagram in Fig. 4.6. Next we do what witl be do
frequently in the chapters to follow: we scale the frequency by dividing s by wo, L&, ¥
use the normalized frequency S = s fan. To accomplish this step, we divide numerator a
denominator of Bq. (4.172) by @i, :

+H +H

. - =TT {4
(S/LU(])“ +{1/0) (s jam) + } 3 {1/ 05 i

Tisy =

Note that the result obtained is the same as i we had simply set wp = 1 in Eq. 4
When in the discussions 0 follow we refer (o Heeffing wy = 1’ we mean the normaliz,
{or scaling) just discussed. However, to keep the notation simple, we shall in the follo
drop the subscript o from the {requency parameter s and remember that in most filter:
we deal in normalized frequencies. The context will always make clear what is mean
in what follows, s 1s @ aormalized frequency. We also choose the negative sign in Eq.
meaning that we anticipaie an inverting realization of the transfer function. Then Eq.
becomes

~H

[

Y
Fis)= —= -
Ve s+ (1/Q)s 4
We wish to manipuiate this equation ungil it has a form that can be identified with thi
circuits studied previously. We begin by rewniting Eg, (4.18) as '

5 {
(ﬁ“” - 5& e 1) Vi = —~HY,

Let us take a small excursion info the tme domain to see what steps 10
help us develop a circuit whose ousput is Vi We remind ourselves that s
domain represents the differentiation operator, 56 that Bq. (4.19) is the Laplace

second-order differential equation,

dzt"]_(_i)

—
dr g dt
Thus, to determine the cutput voitage v (1) from the inpuat viir) we need"
integrations. But since dividing by s isan easier operation than integration {1/
operator), let us returm to the frequency domain and recast Eq. (4.19)in a i
identify integration, 1/5. We obtain

1 du (D) . .
LT L ) = - Hundn

sis + /vy = —(HVi + V1)

Figure 4.6 Block diagram of second-order 58

5 . L) O H

4.2 The Second-Order Circuit 131
or

SVL =

—{HV] + V) = ¥

s41/0 (4.20)

Lo Eh 1 V 15 ¢ htdl]itd h Hearatiy g tilL S ]lag( 4 I~ B i~ d]id Ed‘;, ldbilt il -
3 }' ‘i‘) Eé YO &1 ih i':h h( SEde f(l a f‘
g'ﬂ{, hu1tss & » CiiEE as B

] 1
Vo= = L [W 1 s
- N Rerayr I/Q(HL; + V;,,}] (4.21)
’“F - e M H
o further resolve the operation in the brackets, we rewrite Eq. (4.20)
s+1/hVep=—-HV, -}
[843 |
Vig = L /H Vi+ ¥ Ly I
. P+ VL Ve = - Wy '
. o ~Vi (4.22)

Equation (4.22}% says ;

. (4.22} says that : ohirined hy i .
oohich in furm s “1“/( s Vg is U%fémnd hy integrating, with a sign inversion, the

s obiained by summing three scaled voltages & s10m, the voltage Vy,

Flutd

V= HV,+ V. + “]u, Vi
0

Thus we have §
s we have identified the double integration to obtain

= R
Vl._ B T — z
(5) B [( s) * "'ﬁ} (4.24)

with V4 obtained from i
; the sum in Eq. (8.23). { :
2 Fie 478 We seo that the Sumimite s ). A block diagram depicting our result is show
Vi and V; a5 pfg %:,}:;t;biﬁ summing node reafizes the weighted sum of ﬁ;e mrstjlt;s now
R L as asc - PO s B VEs 3
in Eq (4.22) and 1 fnal non F4q. (3.23), followed by an inverting integrator to prcx;utilge; V}’
derminde. 1o is imewgﬁngcinimb erting integrator to obtain the lowpass output ¥, 59 E;e /452??’
S, A ~ o observe the functions reali = L a8 o el
Ve is seen 10 be obiai ctions realized at the oth
5 & 1s . K . er QUIDITS 4
ained by muliiplying Vi by s and ¥ by multiplying Vrsi\‘g’ YBanti EH-
S Y 3ol G.

{4.18), the results are

V= - v
ot Ty .25%)
X —Hs
‘/B e T
3 . N — V) = T
S/ 1 sV (4.25b)
Vi = ik
eV TV
S (O ] wV {4.25¢)

5, at th: th}ee n{)d({ ii C i W s i 3 . i
) ) o i 5 [the( ]G(-k. d]dgr&rﬂ ri,&}hlﬁs ot (}ﬂfjf i }0 pd&-. unction T] fi) ki
- ";Eij}L “;j;i-n]!-e}é as 4 ba”d[)(l&s ]B aﬁd a highﬁﬂ&ﬁ( T}{. NGEQ tha{ VB SQUdi ng ti(:
= .€.J - (HI 1 a { o at io i d al (;lle . 6. 5 a5 § rkestf,iled i
nd goe& G ZC WG hlgh fI‘C i’lCi as was s 1

> The voltage Wy ¢ .
o ‘ u at the highpass output equals zero a -
ney; reaching HQ at s =/ and H at f} == ;del& zer0 ats = 0 and then ncreascs with
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: 'Haﬁiing»éiésvéf!éi;}@@a’Siﬁipé_é_%}iéslé diagram to realize the transfer functions of Eq. (425 :

ed 1o con next how te implement the circuit with real components. To this &

we returst 1o the circpits we developed in Chapters 2 and 3 and recall that we were abl
realize an ideal inverting integrator, Fig. 3.2a, but notan ideal noninverting integrator. But
inverting integrators cannot be used directly because we must ensure szaibiliiy, wlﬁch requ
fiegative feedback in all Toops. To solve this difficulty, we intraduce a minor modification
thie block diagram of Fig. 472 and realize a noninverting integrator as a cascade COn
of an inverting Integraior and an mverter, (1/5) = (—1/8) = (=1}, a8 is shown it Fig
This approach provid'és the additional advantage of letting us realize a poninverting 1o
function at the output — Vg, We can 00w use two of the inverting integrators of Fig. 3.
in Fig. 4.8, followed by the inverter of Fig. 2.17a with Ry = Ry = i, T» in Fig. 4.8
input we need. the summer of Fig. 2.29a, which we can combine (merge) with the infg
by replacing Re Dy a resistor and capacitor in parallel; this circuit is shown as Ty in
The module 7} realizes, assuming an ideal opamp, Vi/A = 0, g

we need to consider

]. x ‘V[-“%"H = V] *%“{1;Q+5) pt Vg 7-‘\‘1’0
that is, as required in Bq. (4.20),

Figure 4.7 Biock d
infegratey loop} W0
Eq. (418}, (a} usk
and a noninvertin
(b) using two inver
tors and an inverte

T,

Figure 4.8 Circuit tmodules to implement the biock disgram of Fig. 4.7b

A

4.2 The Second-Order Circuit 133

Vi me — AT .
B s+ 1/0 (Vi + HVy) {4.26)

\iCP{iC& that i§l€ ieedb&ck TESISION ACrOss dﬁai 1 S leésl 1 g g
S tltE I ( OS51Es 3
b s Hegratos Iliﬁkﬁ‘s ”Eﬁf tegraioy
1055 y’ Ci) ili?ﬁi“lg I;‘HS equatl@u W]Ih

, 1 .
- VL= ‘”;VB and” Vi = (—1(-V1)

_a}nd mgkmg t‘_he connections suggested by the labels :a'{ the terminals of the three modules
IFCSLEI:iS in the full circuit in Fig. 4.9. This filter is the so-called Tow—Thomas biémad {Tow, =1‘9*!5§f
Thamas, 1971). To see how the elements of the cifcuit enter the transfer function exp]ic;té et
us fabet thers as in Fig. 4.10. Routine analysis results ;nthe lowpass and bandpass functi};ﬂs.

o AR R:CLCa)
504 5/ (R1Cy) + 1R RACLCo) @21
Ta(s) = (~sCoRe) x [—Tids)] = — (RifRs) s/ RiC) (4.27b)

8+ 5RO + 1R RCLCo)

The circuit cannot realize the highpass output because we have chosen to merge the summing

:" b}mk with the first inﬁegrﬁtar. If the highpdss output Is réquired, an additional opamp is

A

[he Tow-Thomas biguad.




4.2 The Second-Order Circuit 135

134 SECOND-ORDER LOWPASS AND BANDPA
needed to permit realizing the summing operation (Fig. 2.29a) and the integration (Fig. 3. 764 g‘:?
e
?%gg R: e R4 — w];w, — I
wC " 2x 0 k10 K

a

SRR
2
|
£
n
=
2

separately.
Comparing Eq. {4.27a) to the standard form of Eq. {4.17), we identify the appropri
coefficients with the element values as

and

Ri=vVRRO =35 10° Q2 x 0877 = 433kQ

4 i R{ j C‘ d H R.z
R oo ] T an =
0 AL R

R R.CC

The two resistors of the inverter are also

are shown in Fig. 4. b chosen as 10 k€. The circuit and its test performance
te. 6 dB as Spge C‘zrﬁild. ?; :otf%e% ;{hat the circuit 1s a lowpass filter with a dctegiiie:g’;nf;
rad/s divided by 27, .;ee Fi;d;rsl :?dj;i:?i ;:ﬂf Iﬂk 3.7 kHz {a listle higher than 2.{]“(‘}(}-{5
;if:;:lf;jl(:?j;dr; ::gr yffe?;zeﬁncies above 3.7 kHz zf zgérgd;e;hgei::izb?g ‘;B@dg;e ‘ amj lh-e
at approximately 35(; k\I;?Stéyi ; We also observe an unexpected dip in the aitémi:tz 06%‘«?,
model. 7 that can be shown to be caused by higher-order poles in thzi);ir;;

R

¢ to satisfy the given design parameters. Th
have more components (here six) than parag
& components and then examt
(g = 1y and int

n now determine the element value
design: we
select arbitrarily three of th
three. Since we used frequency scaling
make the following choices:

We ca
gypical sitnaton in active filter
(here three). We will therefore
consequences on the remaining
use magnitude scaling as weli, we

C,=Cr=1 ad Ry=1

SR

HESEE R

and obtain from Eq. (4.28)
Ry = (@, Ry = 1. and Ra=1/H

1 previousty derived in Fig. 4.9,

s give us exactly the clrcui

These element value
he biguad circuit is (hat it can be orthogonally tuny
5 ki
AN

An important property of t
we mean that
i. R, can be adjusted t0 2 specifie
2. Ry can then be adpusted to give the specifie
has already been adjusted.
3. Finally Ry canbe adjusted to give
affecting either g OF ¢, which h

d value of wq.
d vatue of @ without changin

0.01 uF

the desired value of H or gain for the ci
ave ajready been set.

uning algorithm. This algorithm provides for
¢, then the tuning 1s called iterative, meani
unti) ail specifications are m
he filter is to be produced o

L.M741

10 kL2

i

These steps are ofien catled the ¢
tuning. 1f this tuning is not possibl
to adjust successivety each of the tuning elements
tening is always much preferred, especially when
Tine with a laser used 10 adjust each circuit element value.
An example wilf help vs understand the design process:

ST
e . . . . .
“f"{ A lowpass filter is t© be designed whose poles 10 the normalized s-plan
w0377 j0.8165. The dc (@ — () gain is to be 2. The frequency &
%} 243, 000 rad/s {fo= 3183 Hz). Find the values of the pole frequency and’
ifications. :

o . . . .
%5 and design a circwit 0 realize the spec

{bj

From Eqs. (4.10) and (4.11) we find cg = Land @ = 0877 = V3/2. Al 2 '
— 9 Letus choose €, = (3 = € =00 F and the normalizing’ N
H et us choose €4 3 0.0t i1 ' ;m tfe nc};?g ;El g 2 v 4}“ (aj Circuit for Example 4.2 and (b) its perf )

alue of wy W o 5 100 dB to +10 dB; cursor at 3.70 kHz “sp]t(} c;?;émé (Bode Plotter scales: 10 He to

Cheosing Bz = Ra in Eq. (4.28) with the given v
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e based the design on tdeal

given in Fig. 4.30b. Although W
real opamps 1s pearly as predicte
O equals 14.3 rather than 15 as sp
the experimental center frequency ©

i midban

4 The experimenta
s two-integrator loop st

ccified. Ag in the previo
quals 36.9 kHz.

10k

SRR
i
B

e
R

o}

(a)

Bade Plouer

T Ot

S

)
r BErample 4.6 {b) exp

{ay Filwer designed fo
0 dB to +10 dB; eurser at 369k

erimental performan

Figure 4.30
dz, 1.86 dB.)

scales; 30 0 43 kHz:

This example demonstrates that the Ackerberg-Mossberg bigua
designed celiably for higher frequencies and ltarge quality factors’.
unpredictable ¢ and gain eITors. Frequendy deviations are, of i
circuit siructure because, by Bq. (4.8%). 9 cancellations do ot infiu

We have now analyzed i great detail the fwo-integrator-iod
in Fig. 4.10 and 2 pumber of modifications, With the belp of our
arrived at the alternate implementations. The understanding £2 g
integrator losses e the cause of erFors in biguad performance.

d that at least the errors in quality factor could be elimind

ere

R BIQUADS

Th addition to the th mpltfier b

_ ree-; i i

s w0 opamps o ¢ vee ;: m{:}it’ er biquads of Section 4.4, engineers have invenied bic

use iw ATy y one opamp. The number of opamps does ﬁf ﬁoar 1‘1;‘;35;3 o
N 'se, aftecl cost

; A
e e
:ﬁ R
ol

5 the

4.5 (Other Biquads 161

integrator with a positive fos .
the ACkerb@Fg—Mois?;l:egéms é[erm j&v’lﬁl one with a negative loss ferm. This res .
that of the TcmehOmaf biq:ad {?f Pjg' 4.29. Observe that the improved .perfj: rffisulted o
only a wiring change KVV@ (iz'all N hg: 4'19 is obtained at no additional cé;:n;dn(’e e
the f\ckerbergwl\/imsb;:?g ?)iQL}i étilirefore, in the remainder of this book da:-:a.l ) r}@quxres
; i ad whenever . e only with
Nevertheless, the literatt we need to use i
3y iter; ek ; se a two-mniegr: s
developed for a Varieiﬂr Z on &c?tlw_a filters contains a great number of c:egcr;t?; foop L.mm{'
fo present the student lei)th 3Pplkllca}{mﬁs‘ in the next section we shall :stud:; a-(?der ?mm{s
, - 4 choce i - - ¥ eW O Y
requirement. ce of ¢ircnits that may be calied on to realize 2 d::h?m
! sign

a4 I! o p 1 » b > Y
H§§ OWEE COTISUEY tion bﬂ{ iElE main diif Terces b&Wv ot ent ¢

p €8, {s] be dl» CUS Sed m Chapt T §2 and the [od ty 1 ]}G:]% &E);& to
0 COHY onent t 1€(E ances 5 5 < N 1T VETS at]h 1 g

4.5.1 Sallen-Key Circuits

'ﬁl@n“Kﬁy ﬁlte? S WEre am Ei vl FI ] terainre ¢ S E]
% b g Ong t?lﬁ’: hr i ac i i ped gHen
: y } - st active ﬁltel’s [i’lfﬁ d] i i
‘ . o p (f 1 the k
é E{'E' ,'- ?955 II]%L‘:’ Ieg(fEI CNce Contalrﬂ\ a Wh(}ie CalaEOg ()f ?Obﬁibje structures t] 1at Pﬁ] 131 l.li
. y 3 !aﬂsfer flﬂ'tcii{)ﬂ;. OHE ﬂCh Stmciuilﬁ: io Eédh:kze a i}W])a )
{E[ﬁ’, ;eailZd%i{}]; of vVariouw t iif: Ul T s s B () ¢ 1 FPAss

(4.973
(4.98)

(803 + Ga) Vy = Ga Wy
Vi (G + Ga +5Cy = G Vi + 5Cy Vy + GV

:]'}‘:'j}lﬂ_].} WeE }[d’ Ve Va - p = ) ¥ q
— £ d WE Ca
: o ‘f,’} ; V ’ afl 1 SO;VE {?IE pl'e 10us thi’@f: & LicitiGHS é H
i f &Ii:{l 11 b F - LEE EIS lnstead A8SUINE & rﬁcil Opaitlp W’itil ﬁﬂ;te gani ).; kk‘ fﬂid u(;e
: 5«-:,, A %(?( h{f— ﬂ] )E@ o mnves Ejgale [he effect‘ Y A W ¥ ] ( ') b
| . - 5 ): S l - © next S(}I Ve Eq. (é‘:}g) iOi‘ E’

Gi+ Gy 435G

WGH +GZ ‘+“S€{§

7

a =

Ve, we obtain

- -GGV +5CGL Y
S2C1Cs + 51Ch € et
1€+ 5[C2 (G + Go) + CiGe] + GGy

v,
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i Figure 4.31 Salten—Key I
filter; (&) dc gain H =
gain H = ak.

which with Eq. (4.96) and V, — V_ = V5/A results in

i
G
e V2 kG T+ K/A
{$) = v

! ,VEC)CZ+S[C2(G}+GE)"§”C§GQ (]~K

P+ K/A

To derive the design equations, let us assume for now an ideal opamp
the lowpass function

o Vg KGIG'Z .
sy = i:; - SEC;CZ +s[Cy (G + Gy + €1 Ga(1 =K

For convenience we set € = (7 = C to obtain

4.5 Other Biguads 163

KGGy/C? B Hej
T4 sIGy + Ga2 — KN/ C + GG/ CC 5% 4 saog/ Q + ]

T(s) = {4.101)

We have again expressed the function in its standard form as in Eq. (4.17a) that lets us identify
how the three filter parameters are expressed in terms of components:

, GG,

[ “ﬁ&z‘*‘ (4102)

= /GG

% A% iz
LT 4.103
. 0= T ea -k @109
s H= K =1 (4,104
- 04)

In selecting the four elements C, G, G», and K to realize the three filter parameters we have
some freedom of choice. Since, in practice, the available capacitor values are usually limited,
let us choose a convenient value for C. Also, et us assume that the de gain is not important
and can be fixed at H = K. Then we may select B; = Ry = R and obtain with

!

B e 4.105;
Q=0 (4.105)
f};ie element values
R=—' and K=3- 41528 o Ri—2-U0Rs @i
food an =y — —— — 1.e., B A R .
e C 0 Rx . B IR CSTIT Y )
Cis arbitrary and can be chosen equal to R o minimize the number of different resistor
ies.
é"?ﬁf .
o e g a Saflen-Key lowpass filter with fy = 12.5 kHz and no peaking. The dc gain is not
% *"‘% fied. Use an EM741 opamp.
s
s .
.
,&gz ing to Fig. 4.13 a value @ == 0.707 is required to avoid peaking. Choosing C = 0.01 uF
o in
&é&
2 1
e Ry= Ryz= Ry = = kG2 = 1273 K02,
- L T s < 10 x 10°F
i Rp=Rs(2 - 1/0707) =746 Q2

feii‘lféé). Figure 4.32 shows the circuit and its performance. The dc gain equals 4 dB
d, and fy = 12.5 kHz. The dip and subsequent rise in gain at high frequencies are
gher-order opamp dynamics.




456 SENSITWITY

12.1  Definition of Bodie Sersitivity 457

values of sensitivity are desirable, whereas circunts with large sensitivities ought to
Analogous expressions are true for the parameters of the transter function:

. ; - ¥
L T T Y 7 7, g, N s IRE >V,
RT9R/R "R T OGR/R - : -
These equations are general; let us for the purpose of a general discussion S @ B H
label the function or parameter in question ¥ and the component x (see Fig. S
sensitivity expression becomes % ‘ Figure 125 A ransmission cus : &
sens Y EXpress : 2 S108 systent: (a) without feedback: (b) with feedback
2 , k x| ack,
g BV x By Z o i
T Bx/x Y oax S P 3;;1-’2 -
o . : + fi2.12
Recall from differential calculus that i : and the s ensitivity l‘uncn(}n 15 f A2 T : e 212
" = ound by appfymg Eq (12.8,
dlin ) = — ‘??%g ST = 1’;31'" BT {I*H?‘fn}_nmm:. P
o e : ar T Tt [
Then we may rewrite the sensitivity also as 72 Now if : U+ BT, 5y TR HTT (1213
e oW i we select the : o L -
, S ] parameters such that the /i L _
o - f; i}: _ dE.n ¥ ; - op gain H jrf'Tg: 1, the transfer function is
Y dx dinx 1 E :
. el Toae
Two important ebservations may be made at this point., First w e . H

is computed from the slope of the function ¥, we need to be consi : and the sensitivity becomes '
of where the-slope is measured: the derivative is evaluated at the
{at xp in Fig. 12.4), Second. we note from Eq. (12.4a; that in gene o~ i
of frequency if ¥ depends on frequency. For example, the sens [ HT.T, € 1

i nt R at the nominal value Ry equal
magnitude to a component K at the nominal value Ry equais Q}' example, if the loop

e open-loop systern. Th
TRIssion systems,

gain is 1000, the. semsitivity js- 103

e result of this analysis led 1 Lompared-tg.

value 1 f
the W}despread use o

R 8T (e, R
feedback in

T TGe R 3R

S 17 (e, Ry i

i
4l
!

Clearly, it depends on frequency. So we must make certain that
is measured and evaluate the sensitivity at or close to the oper
little relevance that one’s design has very low sensitivities dt'dy
in the range of a few hundred kHz
The problem of interest to Bode when he mcrodticed
1943) was the change in a transfer function 7 when one of th
system, an amplifier, was likely to suffer large changes. If'{
12.5a where T) represents the amplifier, the overall transf

v sensitvity anaiy%ié 10 the inverting ampiific | ) Srowin £
. verting amplifier of Chapter 2, shown for g

fiveniénce in

ve from g (255),
= T;r; . .

' T ¥ ’ R'),/R]
e S
,Vz f+(l"~§-Rz/Rd/A
Wﬂ have labeled the amplifier’s low_

It'is clear that T, directly affects the ransmission; #s s

o L a T frequency gam G& The seng

= :r 52;

Frony this we see that 2 1% changein regﬁlss i
ismtroduced as in Fig 12:50 then, as studied i
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5 SIS
S

e,
S

e

e

S

LR RIS

opamy.
R,
oA P E
Vl [ V2
which we evaluate at A — 00!
I i .
. RO+1/A [

Sk = Ry +{R + Ry)/A

% Ao

Figure 12.6 Inverting amplifie
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x, then 87 = ¢, obviously, because the derivative is zero, If ¥ is proportional to x, that is,
¥ = kx. where k is a constant independent of x, then S¥ = 1

Y=he = §'= (12.14a)
' Often, we will encounter the form ¥ = kx® where aandk

are constants. From Hg. (12.8) we
find directly §7 = a:

Y=hx® = V=4 (12.14b)
H'Y is a product of two (or more) functions, ¥ = Yi¥2¥5 - - - each of which depends on x, we
have, within¥ =¥, +In¥ 4 ..

SE[}{Y}}EY;'-‘} dinY; din ¥, ) din¥;

Alnx Alnx  dlnx | Binx

Similarly, we obtain
e Ry a7t R Ry + (R + R}/ A~ Ry/A — B -'{'* ‘
s :MZI“:E‘RQ T [R;%{R;"%Rg)f}\]z [Ri +{R

These results show that a 1% change in the resistors Ry and Kz caus
+1% change in Gy. Since accurate and stable resistors are avaﬂ.abi
is accentable. To evaiuate the sensitivity to the opamp gain A, &

T AT S0 TG0 A A+

Since usually A 3> 14 Gy in the frequency range of interest, th
1

Sk 7 = (1 + Go)

A A ?

This is a very smali number for large A. It demonstrates that the 3
equal to G = — R,/ Ry. independent of A, as long as the op
R is remaved {( Ry == o0} so that there is no feedback, the sett

§r R+ R;
AT A+ DR+ R

i
|
1R 00

and changes in A translate directly into changes of Ge. W‘i}g
unity are Zicceptable for passive components, they are ncrn}aﬂ
because the active parameters in a circuit must be c:tx‘pt.act{-z1
discussion in Chapter 2 that the opamp’s gai;?ﬂbandw*i'dth pro
by 30% to over 100% in processing, in addition to being 'dep
such as temperature and bias. :

We will next derive some general formulas that follow
when computing sensitivities of the filter circuits in th; !
is a function of a parameter x, or of several parameters %

Y=YV = S =80 45y (12.14¢)

l, the sensifivities of all functions ¥; add. In like manner, if ¥ is a

s

quotient, ¥ = ¥,/ Y., we
d
Y=%/Y; = §] =55 . g% (12.14d)
ﬁ?am.which it follows divectly that
; dn{1/Y) dln¥y .
SV = L o = 5§ (12.14e
* dlnx dlnx o ' /

further very powerful relationship makes use of the chain rule of differentiation: if ¥
fanction of x, which in turn is a function of a variable r, we differenfiate 37 /i
“f8x) % (dx/81). The sensitivity is then computed as

, ;1 3Y ax ;
V=1 x()] = §¥ = L2008 XA i

= *
Y dx or  x Y éx x4

Y=Y[x)] = § =g§'g (12,146

E o

8, we muitiply the sensitivity of the function ¥ to the compuonent x by the sensitivity of
MiIponent x to the variable r. This relationship is convenient to use, for example, when a
é&fﬁmeten say {J, s a function of a resistor R, which depends on temperature 7. Then
mpute STQ = SfS;‘ - Or when we wish to determine how sensitive a transfer function

1 the gain-bandwidth product e of an opamp A, we compute §T6 = gTtiga

$ 1ot sufficient, as a rule, o compute sensitivities to a single parameter, because the

ns in all the circuit’s compenents add to cause performance deviations. Thus, single-
7 Sensirivities give only incomplete predictions of the variations to be expected.
tons based on single-parameter sensitivity resalts should be reated with caution. When

i

2
e

R

SRR

S

R

LG
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i ts, ¥ = Y(x;, Xz, ..., Xx). A8 aH'L}
a funetion depends on several elements, .
wish to find the tikely total change when all the eie@ents are e}.(pected {
agéin of differential calculus to find the total derivative. Assuming # comp

ay ay

dY =dY (x;, %2, ... Xp} = g;{dx} -+ é-;;dXZT ~+‘

This equation is recast in the form .

dY  x; 3Y dx ;f_”w_?f_dx'iw,, ic_,?maY@
?ZVQXTYSXZ_XQ Y d}:n

dxy

Xn

dx
g da +sPE2 st
ox F Xz :

¥t says that the total percentage changf_: of ¥ is the sum of ail th
muitiplied by the percentage chang)es of ih‘e components. o

Equation (12,14g) gives a guick estimate of Ehe' exp?c e. ¢
accurate multiparameter sensitiviry results may be obtained r.om a
Monte Carlo analysis we vary most or all c$m?pcme§ts 'of a circy
tolerance range, such as 1%, with given statistical d;strnbuno_.n,g‘ : 4
to simulate the manufacturing process. We then perform gﬂ&lﬁgﬁg the
for each set of element values, Clearly, computer analysis w1ﬂﬁl1
software is necessary for that purpose becguse‘ﬂormally sever:
to yield valid statistical results, The plots in Fig. 12.1 were O_ ;

Calculate the SensitiQi{y expressions for pole-frequency a_ﬂdq
filter in Fig. 12.7. : :

Figure 12.7 Pasy

fs

CT

The transfer function is

IR
L=y = 3¢ scR+1

Clearly, we have

i et f2 e 12
wp = oz = ETCTY , an&Q

NILC. -

P
oA,

changing R by 1% causes no change. in o bat a=1% change
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We obtain immediately from Hq.{12.14b)

1 i

S§70 = SE¥ = e,
(S 3

LTy Sg =0

and
1 o
ngﬁ-ifﬂzm ng;-:,zg, C8F =

his analysis shows that a +1% change in £ of €. causes a 0:5% change in'wy and 0, and

in F: 'The sign in cach case
dicates whether the change is mcreasing or decreasing, These sensitivities are considered

tow. The cireuit is an example of an LC ladder-filter; we shall find out in Chapter 13 thae L0

dders in general ténd o have very low sensitivities, . .
‘The total changes are computed with Eq.(12.14g) as. }

g gL -
G e - (1 5

Npaded 12.16a)
) c R R TTINLTE (12162
4@ _ gdL  ,dC  ,dR 1 [dL  dCN 4R
- el S VoS S Ay e e ks P 2.16b
¢ tr Yo TRpTalmiTie) g (2160

ill make an important observation. If the refative changes'in L and C are in the same

hirection, they add to changes in g, but subtract s their contribution to-Changes in . This

tictusion is intuitively obvious from Eq. (12.15): if both 7, and C iricrease, their effects on
add because wy depends on a product of the two elements; bt the errors tend to cancel in

/hich depends on a rario of the components. An increase in.R; e, large Hasses; resulis
decrease in , but does not affect @ L '

The explanation at the end of Example 12.2 may need & more formal justification: Consider

Miponents in a eircuit, and let us take resistors By and R, fo be s ecific. TE these
ponents suffer tolerances AR, and ARz, the elements in the circuit are not the nominal
Ryg-and Ry, but rather : E

18 .

. AR | (AR
R+ AR, ﬁ.sz}.(? +o ‘1). and - Ry = Ryg -+ ARy = Ry (i*t* 2}

Ry and ARy /Ry are the. relative errors. If 2 cirenit is now a fonction of the
the two components, the dependence is on -

> _‘ A.R;. ( A.Rg) N _ AR,
. i? 20( Rig ) . Ry T T Ry TR,

cglecting the product of the errors as smafl,

. ARy AR
Ry % Ry = Ryp Ry (1 + ot —“M%) {12.17a)

AL f{}'ﬁ av_{i.egaeﬂdangg 0;} ‘_-a- pmﬁiu,f—_t,;th@:-em@gs ,&dd . Thxs 15 't;he:j';}ti:@asion. :with
cinEqe (12.15) and i3 reflected in the: plus sign in B (12:16a) between




