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Figure 1.5 Choice of filter type as a function of the operating frequency range.

The meaning of several of these criteria will become clear as we progress in our discussion of
active filters. Some guidelines for a possible choice of filter type can be obtained from Fig. 1.5
as a function of the desired frequency range of operation. The range of LC filters is limited at
the low end by the bulk of the inductors and for high frequencies by parasitic and distributed
effects. We see that compared to passive LC filters, discrete opamp-based active filters can
realize filters for lower frequencies, but not for higher frequencies, whereas integrated analog
filters, depending on the design and the type of devices used, can span the range from low
audio frequencies to the gigahertz range. Switched-capacitor filters will be seen to be limited
in their application range from about 10 Hz to about 1 MHz by impractical element sizes
and by the bandwidth of the active devices. Microwave filters cover the highest frequency
range by relying on distributed elements and waveguide designs. The indicated limitations of
active filters depend, of course, on the active devices used: opamps or OTAs. The limits may be
temporary and will change as technology advances and faster active devices become available.

If sensitivity to component variations and fabrication tolerances is important, passive LC
filters often have an advantage. We will consider this aspect in Chapter 13. Although still used
in large numbers, their design is not compatible with modern fully integrated systems. As our
discussion progresses, we will learn that to address this difficulty many methods have been
developed to simulate the performance of LC filters with active circuitry.

Finally, active filters require, of course, power supplies. The power supply voltages range
anywhere from 1 V to 15 V, with typical designs at the time of this writing at or below 3.3
V. You will have learned in basic electronics courses that as the power supply voltage for
biasing the active elements shrinks, so will the linear range over which the active devices can
be used. Consequently, the usable linear signal level becomes smaller with reduced power
supply voltages. Since active devices generate noise, which limits the smallest signals that can
be processed, dynamic range becomes a serious concern for the designer. Dynamic range is
defined as the difference between the largest undistorted signal and the noise level.

1.4 CIRCUIT ELEMENTS AND SCALING

It will become clear as our study progresses that filter design is primarily a frequency-domain
matter and that we seldom make reference to time-domain quantities, such as rise time or
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1.4 Circuit Elements and Scaling 11

overshoot. Design specifications or physical measurements are made in terms of frequency f
in Hertz. However, it turns out to be much more convenient to use radian frequencies  in
rad/s rather than f. We will follow this practice and use @ as long as possible and only convert
to f in the last step. Experience in design will show the advantages of this choice.

We will make extensive use of both magnitude and frequency scaling, and also of
normalized element values as well as normalized values of frequency. This has several reasons.
It avoids the need to use very small or very large component values, such as pF (1072 F)
capacitors and M2 (10° Q) resistors. It permits us to design filters whose critical specifications
are on the frequency axis “in the neighborhood” of @ = 1 rad/s. Further, it permits us to deal
with only dimensionless specifications and components without having to be concerned with
units, such as Hz, 2, F, or H. Finally, the most important reason is that much of the work
of filter designers is based on the use of design tables. In these tables so-called “‘prototype”
lowpass transfer functions are assumed to have a passband along the normalized frequency w
in0 <w <w, =1andastopband in 1 < w; < w < oo. See Fig. 1.3a. In addition, these
prototype filters are designed with normalized dimensionless elements from which the real
physical components are obtained by denormalization. The relationships between the physical
elements R, L, and C and their normalized representations R,, L, and C, are

ws 1
L,=—L, C,=wsRsC, R,=— (1.13a, b, ¢)
In Eq. (1.13), Ry is an arbitrary scaling resistor (in Ohms) that normalizes the impedance level
and ws is the radian frequency (in rad/s) that scales and normalizes the frequency axis, such
that @w/ws = 1, usually, at the passband corner. These expressions, as well as their inverses,
Rs

L=—"L,, C=
g (UsRs

C,, and R = RgR, (1.14a, b, ¢)

are easy to remember by noting that R, L, and C have units of 2, H, and F whereas R, L,.
and C, are dimensionless numbers. Thus, the scaling factors wg and Rg do not only change
the numerical values of the elements or frequency parameters, they can be seen to remove
or restore the units depending on the direction of the transformation. As an example, assume
that a prototype filter was designed, and design tables indicate that R, = 1, L, = 3.239, and
C = 1.455 are the required normalized components. If the impedance level is selected as
Rs = 1,200 €2 and the frequency was normalized by ws = 10.8 Mrad/s = 10,800,000 rad/s,
we compute the real inductor value from Eq. (1.14a) as

1,200 2

L= —" " 3239 =360 uH
10.8 x 10° MHz

Similarly, we find for the other components R = 1.2 k2 and C = 112 pF. We still point
out that all components with physical units (€2, S, H, F, s, Hz) are scaled, but dimensionless
parameters, such as gain, are not. Thus, in the above example where Ry = 1,200 £ was
chosen as the resistor to scale the impedance level, a transconductance of value g, = 245 uS
is normalized to

Zman = Rsgm = 1200 Q x 245 uS = 0.294

but an amplifier gain of value K = 45 dB keeps its value K in the normalized circuit.
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TABLE 1.2 Typical Component Values in Discrete and Integrated Realizations

Discrete Integrated

Tolerances 1-20% 10—40% absolute
0.1-1% for ratios

Resistors
Preferred range 1-100 k€2 Process dependent: values
Lower limit 0.05-1 kQ with 10% to 30% tolerances
Upper limit 100-500 k€2 in the range of 50 -1 k£2
Capacitors
Readily realizable 5 pF-1 pF 0.5-5pF
Practical 0.5 pF-10 uF 0.2-10 pF
Marginally practical 0.2 pF-500 pF 0.1-50 pF
Inductors
Readily realizable 1 nH-10 mH Real inductors with large losses
Practical 0.1 uH-50 mH of the order of 10 nH or less
Marginally practical 100 nH-1 H

1t will become clear in the chapters to follow that ordinarily there is no unique solution
to the design problem. One of the decisions that the designer has to make is that of element
size. Making appropriate choices will become easier with experience, and selecting a suitable
impedance normalization factor, Rs, will help. Table 1.2 serves in guiding the selection.
Whether an element value is conveniently realizable depends on the chosen technology; here
we distinguish between discrete filter designs and filters to be implemented on integrated
circuits. Note that in integrated circuits, ratios of like components can be very accurate with
careful layout and processing, but untuned absolute values of components can have very
large tolerances. This is the reason why the parameters of integrated-circuit opamps are not
predictable with any accuracy or reliability and why in the design of active filters it is very
important to make the filter independent of the opamp parameters. Practical sizes of resistors
and capacitors are limited by the available silicon area on an IC chip. Integrated inductors are
very small and at the same time very lossy. Simulated inductors can be larger and less lossy,
but they add noise; it is not difficult to implement a simulated inductor in the range of many
mH or even H.

The design of active filters generally requires accurate components. Typically, resistors
with 1 or 5% tolerances are used in discrete circuits, more rarely in less critical applications 10
or 20% resistors will suffice. On the other hand, capacitors with 10 or even 20% tolerances are
more readily available and are preferred to save cost. As a rule, suitable capacitor values are
preselected, such as 0.1 or 0.01 uF, because fewer standard capacitor values are available for
the filter designer to choose from. It makes little sense to compute a capacitor for a specified
filter to three or more digits and then find out that no company manufactures that capacitor. The
resistors needed for the filter are determined from these predetermined values and a specified
frequency. For example, frequency is set by an RC productas fo = 1/(RC); then, for fo = 12
kHz and choosing C = 0.01uF we find R = 1/(27 foC) = 1.326 k2. The next closest 1%
resistor can be chosen for the design. If the resulting tolerances of the RC product are too
large, the resistor must be trimmed. We should note that the fact that components with at best
1% tolerances are available to the filter designer does not mean that the computations leading
to the element values can be carried out to only two or three significant digits. The numerical
mathematics in filter design is as a rule very ill conditioned, especially for high-order filters,
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PROBLEMS 13

so many digits should be retained in the calculations to achieve valid results. The problem is
that many intermediate results involve small differences of two relatively large numbers. For
instance, suppose a step in the algebra calls for the difference of

1.324495 — 1.323122 = 0.001373

Being mislead by the available 1% components, a designer may choose to carry only three
digits, 1.32 — 1.32 = 0.00, clearly a meaningless result. Even computing to four digits,
1.324 — 1.323 = 0.001, leaves only one digit, which has a 38% error. Let us emphasize,
therefore, that computations in filter design must be carried out with 7 to 10 or, for high-order
filters, even more digits. We shall throughout this text carry out all computations to the required
accuracy, but keeping practice in mind, use element values to only two or three digits. If circuit
performance calls for higher accuracy tuning will be assumed in our designs.

PROBLEMS

1.1

1.2

13

1.4

1.5

The input voltage of a filter is v, (1) = +/2 cos(wt +
2.68) and its output voltage is vy(r) = +/2 - 5.34
cos(wt + 4.87). At the applied frequency w, deter-
mine the gain in dB and the phase shift in degrees
implemented by the filter.
At the frequency f = 12 kHz, a filter is designed
to attenuate the input signal by 78 dB. Find the
amplitude of the output signal if the 12-kHz input
has an amplitude of 1 V.
A wide-band input signal of amplitude 100 mV is
applied to the filter. In the stopband, the remaining
signal components at the filter’s output must be no
larger than 45 V. Determine the required stopband
attenuation « of the filter in dB.
If an amplifier has 35 dB gain at f; = 100 MHz and
shifts the phase by —42°, determine the output signal
delivered if the input is viy () = 2.4 cos(w.r +45°).
Identify the filter type (lowpass, bandpass, etc.) de-
scribed by the following attenuation specifications
and calculate the widths of the transition band(s).
(2) Opax = 0.01 dB in f < 3.4 kHz; amin = 45
dBin96kHz < f <00
(b)  @max = 0.01 dB in 12.5kHz < f < 24 kHz;
®min =45dB in f =7 kHz and f = 40 kHz
(€) Omin =85dBin12.5kHz < f <24 kHz;
max = 1dBin f <7 kHz and f = 40 kHz
(d) omin = 60dB in f < 24 kHz; @pex = 0.5 dB
in f > 40 kHz
(&) @max =0.1dBin f < 360 kHz; i = 80 dB
in 600 kHz < f

1.6

1.7

1.8

1.9

(f) omax =3dBin 1 MHz < f < 2.4 MHz;
Omin = 75 dB in f < 730 kHz and api, = 48
dBin f > 7.8 MHz

The transfer function of a filter is specified to equal

- 2(s? +9.32)
(5) = = =
st 4+ 1.3225% + 0.9765% + 0.750s + 1

The frequency is normalized by f;, = 18 kHz.
Determine the gain in dB at dc. Calculate the rate
of attenuation increase in dB per decade at high
frequencies. At which frequencies is the attenuation
infinite?

According to a design table, the normalized com-
ponents of a passive LC filter are L; = 1.2547,
L, = 09873, Ly = 0.8765, C; = 2.5632, C; =
1.5764, and Rs = R; = 1. The impedance level
is normalized by Ry = 300  and the normalizing
frequency is fy = 10.8 MHz. Find the values of the
denormalized components.

The normalized components of an active filter were

computed to be Ry = 1.243, R, = Rz = 1.677,
R; = 6.888, and C, = Cp = 0.765; the amplifier
gain is required to be K = 1.93. The normalizing

frequency is fy = 360 kHz. Choose the impedance
level such that the filter can be built with C = 0.05
nF capacitors and determine the remaining elements
of the circuit, including the final value of amplifier
gain.

Calculate the rate of attenuation increase in dB/
octave and in dB/decade as f approaches zero and
infinity in the function




