Lesson 8

Lesson Exercises:

Recommended Exercise

K27, K28, K36, K37, K38

Theoretical Issues: K24, K25, K26, K30, K39, B10.1-5

Theoretical

- Switched-Capacitor Circuit Technique, SC

The advantages of not having to implement on-chip resistances are several. In the previous les son we saw that the resistance implemented with a transistor is signal dependent. There are certain processes allowing special poly layers to implement resistors. There are however problems with matching and parasitic capacitances. The SC technique utilizes the fact that capacitor ratios are used. Then we only need to match capacitors.
To know all the principles of the SC technique, we have to consider the charge redistributiuon that occurs in the circuits.

Charge redistribution analysis
Consider a capacitor. The charge is equalt to the voltage over the plates times the capacitance value (constant):

$$
Q=C V
$$

By noting the amount of charge that is transferred between different capacitor plates, a flow chart for the charge (and thereby voltages) can be constructed. By only allowing the charge to move at certain time intervals, at discrete-time points, we can control the behaviour of the cir cuit.

Equivalent Resistance

Consider the capacitance and the switch at time t. The charge on the top plate is equal to

$$
q(t)=C \cdot v_{1}(t)
$$

A certain amount of charge will flow from the input to the top plate

$$
\Delta q(t)=q(t)-q(t-\tau)=C\left[v_{1}(t)-v_{2}(t-\tau)\right]
$$

At time $t+\tau$ the charge is given by

$$
q(t+\tau)=C \cdot v_{2}(t+\tau)
$$

The charge floating from the output to the top plate is given by

$$
\Delta q(t+\tau)=C\left[v_{2}(t+\tau)-v_{1}(t)\right.
$$

From this we conclude that during a clock period, T, a certain charge, Δq, will flow from v_{1}
to v_{2}. This charge must equal $\Delta q=C \cdot\left(V_{1}-V_{2}\right)$ the capacitance and change of voltage between the terminals. If there is no difference, no charge will be transferred, etc. The average current, $I=q \cdot T$, gives

$$
V_{1}-V_{2}=\frac{T}{C} \cdot I \text { which gives the equivalent resistance } R \equiv \frac{T}{C}
$$

Parasitic capacitances

We can associate a parasitic capacitance with all terminals of the transistor, source, drain, gate, and bulk:

$$
C_{g d}, C_{g s}, C_{d s}, C_{d b} \text { and } C_{s b}
$$

The switching signal is considered to be ac grounded and $C_{g d}$ is coupled in parallel with $C_{d b}$, as well as $C_{g s}$ with $C_{s b}$
In most cases the influence of $C_{d s}$ is neglected, due to its low value When the switch is conducting, $C_{d s}$ is also considered to be replaced with a short.
By noting these parasitics their influence on the total transfer function can be analyzed.

Discrete-time Spectrum

The discrete-time signal can be written as

$$
y(t)=\sum_{k=0}^{\infty} y(k T)[u(t-k T)-u(t-(k+1) T)]
$$

where T is the clock period. The output spectrum can be written as

$$
Y(\omega)=\operatorname{sinc}(\omega T) \cdot Y[\omega T]
$$

Tips for charge redistribution

Charge can not disappear fron an unconnected plate
On a voltage controlled operational amplifier it is only the output that can add or remove charge. The input is coupled to transistor gates, wherein no current can flow
The charge disappears from the capacticance if both plates are connected to the same potential (short cut)

The charge redistribution is done in discrete events
If a capacitance is switched to a charged capacitance net, the charge will move and eventually reach equilibrium. By using the tips above and use the knowledge of how the charge is stored from one event to another, the transfer function can be derived.

Example Charge I (K25)

Derive the transfer function and discuss the sensitivity of the circuit. Values are

$$
C_{1}=C_{2} \text { and } C_{1}=1.12 C_{2}
$$

Consider the start-up conditions at time t. The charge at C_{1} and C_{2} is

$$
q_{1}(t)=0 \text { and } q_{2}(t)=C_{2} v_{2}(t)
$$

C_{1} is coupled between ground and virtual ground (OPamp input). The charge must be zero
Time $t+\tau$. Switches have changed.
C_{1} is charged by the voltage $v_{1}(t+\tau)$ and the output of the OPamp, v_{2}, that adds extra charge. The charge at C_{1} becomes

$$
q_{1}(t+\tau)=C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]
$$

Note the chosen sign of the charge. For C_{2} we have

$$
q_{2}(t+\tau)=C_{2} v_{2}(t+\tau) .
$$

On the negative plate, the charge is stored.

$$
q_{2}(t+\tau)=q_{2}(t) \operatorname{dvs} v_{2}(t+\tau)=v_{2}(t)
$$

(No charge can disappear from the input of the OPamp if it is unconnected).
At time $t+2 \tau$ the switches are closed. C_{1} is again connected to ground and virtual ground, which emptie C_{1}. The positive charge leaks down to ground, the negative charge is redistributed to the negative plate of C_{2} The extra charge needed to compensate the positive
 plate of C_{2} is taken from the OPamp output.
The charge at C_{1} and C_{2} must be

$$
q_{1}(t+2 \tau)=0 \text { and } q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)
$$

Charge conservation gives (at the negative plate of C_{2})

$$
-q_{2}(t+2 \tau)=-q_{2}(t+\tau)+\left(-q_{1}(t+\tau)\right)=-q_{2}(t)-q_{1}(t+\tau)
$$

This gives

$$
\begin{aligned}
& C_{2} v_{2}(t+2 \tau)=C_{2} v_{2}(t)+C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]= \\
& \quad=C_{2} v_{2}(t+\tau)+C_{1}\left[v_{1}(t+\tau)-v_{2}(t+\tau)\right]
\end{aligned}
$$

We also see that

$$
v_{2}(t+2 \tau)=v_{2}(t+3 \tau)
$$

which gives

$$
C_{2} v_{2}(t+3 \tau)-C_{2} v_{2}(t+\tau)+C_{1} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

z-transform, with $t=k T$ and $2 \tau=T$

$$
\left[C_{2} z^{3 / 2}-C_{2} z^{1 / 2}+C_{1} z^{1 / 2}\right] V_{2}(z)=C_{1} z^{1 / 2} V_{1}(z)
$$

which gives the transfer function

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{C_{2}} \cdot \frac{z^{1 / 2}}{z^{3 / 2}-\left(1-C_{1} / C_{2}\right)}=\frac{C_{1}}{C_{2}} \cdot \frac{1}{z-\left(1-C_{1} / C_{2}\right)}
$$

If the capacitances are equally large, $C_{1}=C_{2}$, the circuit is a simple delay element, (sample-and-hold)

$$
H(z)=z^{-1}
$$

In the second case, $C_{1}=1.12 C_{2}$, the transfer function becomes

$$
H(z)=\frac{1.12}{z+0.12}
$$

This is used to compensate for the sinc weighting of the signal.

Example parasitics I

The parasitic capacitances are associated with all nodes in the circuit. Consider the parasitic capacitances, C_{a} through C_{h}. They are the parasitic capacitances associated with the switches as discussed earlier
During clock phase ϕ_{2}, C_{b}, C_{c} and C_{d} are coupled in parallel. The same is true for C_{f}, C_{g} and $C_{h} . C_{a}$ is connected to the output of the OPamp. C_{e} is connected to the input signal. The previous charge at the capacitances coupled in parallel will redistribute to C_{2}

During clock phase ϕ_{1}, C_{a}, C_{b} and C_{c} are coupled in parallel. The same is true for C_{e}, C_{f} and $C_{g} . C_{d}$ is coupled to virtual ground at the OPamp input. C_{h} is connected to ground. The parallel capacitances will be charged and during next clock phase this charge redistribute and affect the transfer function.
Note that C_{h} and C_{d} always are connected to ground or virtual ground and will therefore not affect the transfer function. While the input signal is directly connected to C_{1} the capacitances
$C_{e}, C_{f}, C_{g}, C_{h}$ will not affect the transfer function.

Example Charge II (K26)

Consider time t. Charge at C_{1} and C_{2} is

$$
q_{1}(t)=C_{1} v_{2}(t) \text { and } q_{2}(t)=C_{2} v_{2}(t)
$$

At $t+\tau C_{1}$ is charged with $v_{1}(t)$

$$
q_{1}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

C_{2} conserves its charge

$$
q_{2}(t)=C_{2} v_{2}(t)=q_{2}(t+\tau)=C_{2} v_{2}(t+\tau)
$$

At time $t+2 \tau C_{1}$ is switched

$$
q_{1}(t+2 \tau)=C_{1} v_{2}(t+2 \tau)
$$

The charge at C_{1} is redistributed between C_{2} and C_{1}
in such a way that the total charge is conserved

$$
\begin{aligned}
& q_{1}(t+2 \tau)+q_{2}(t+2 \tau)=q_{1}(t+\tau)+q_{2}(t+\tau) \\
& C_{1} v_{2}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)= \\
& \quad=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t+\tau)=\left(C_{1}+C_{2}\right) v_{2}(t+2 \tau)
\end{aligned}
$$

At time $t+3 \tau$. The charge at C_{2} is conserved

$$
v_{2}(t+3 \tau)=v_{2}(t+2 \tau)
$$

This is concluded into

$$
\left(C_{1}+C_{2}\right) v_{2}(t+3 \tau)-C_{2} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

Let $t=k T$ and $T=2 \tau, \mathrm{z}$-transform

$$
\left(z^{3 / 2}\left(C_{1}+C_{2}\right)-z^{1 / 2} C_{2}\right) V_{2}(z)=C_{1} z^{1 / 2} V_{1}(z)
$$

This gives the transfer function

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{z\left(C_{1}+C_{2}\right)-C_{2}}=\frac{C_{1} /\left(C_{1}+C_{2}\right)}{z-C_{2} /\left(C_{1}+C_{2}\right)}
$$

C_{1} must be much larger than $C_{2}, C_{1} » C_{2}$, to achieve a sample-and-hold cirucit $H(z)=z^{-1}$

Example parasitics II

Consider the parasitic capacitances C_{a} through C_{h}
During clock phase ϕ_{2}, C_{b}, C_{c} and C_{d} are coupled in parallel. The same is true for C_{f}, C_{g} and $C_{h} . C_{a}$ is short and C_{e} is connected to the input signal.
The charge on the parallel capacitances will redistribute to C_{2}.
During clock phase ϕ_{1}, C_{a}, C_{b} and C_{c} are coupled in parallel.
The same is true for C_{e}, C_{f} and $C_{g} . C_{d}$ is coupled to the input of the OPamp. C_{h} is connected to the output of the OPamp

Now note that C_{a}, C_{b}, C_{c} and C_{d} always are connected to ground or virtual ground, hence always short and will not affect the transfer function. The charge on C_{1} 's plate connected to the input of the OPamp determines the transfer function. While the input signal is directly connected to C_{1} neither will the capacitances C_{e}, C_{f}, C_{g}, or C_{h} affect the transfer function.

Exercises

Exercise K36

Derive the transfer function $H(z)$.
At time t the charge at the transistors is written as $q_{1}(t)=C_{1} v_{1}(t)$
$q_{2}(t)=C_{2} v_{2}(t)$
$q_{\alpha 1}(t)=\alpha C_{1} v_{1}(t)$
$q_{\alpha 2}(t)=\alpha C_{2} v_{2}(t)$

At $t+\tau, \alpha C_{1}$ and αC_{2} are completely shorted. The total charge on C_{1} and C_{2} must however be conserved, while no charge can disappear from the input of the OPamp. Changes of the input signal will determine how the charge is distributed between C_{1} and C_{2}

$$
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t)+q_{2}(t)
$$

$$
q_{\alpha 1}(t+\tau)=q_{\alpha 2}(t+\tau)=0
$$

At $t+2 \tau$ we use the same result. No charge disappears from the OPamp input. It has to redistribute to the other (previously discharged) capacitances:

$$
\begin{aligned}
& q_{1}(t+\tau)+q_{2}(t+\tau)= \\
& \quad=q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+ \\
& +q_{\alpha 1}(t+2 \tau)+q_{\alpha 2}(t+2 \tau) \\
& \quad=q_{1}(t)-q_{2}(t)
\end{aligned}
$$

This gives

$$
C_{1} v_{1}(t)+C_{2} v_{2}(t)=(1+\alpha) C_{1} v_{1}(t+2 \tau)+(1+\alpha) C_{2} v_{2}(t+2 \tau)
$$

Let $t=k T$ and $2 \tau=T$. z -transform and the transfer function is

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{2}} \cdot \frac{(1+\alpha) z-1}{(1+\alpha) z-1}=-\frac{C_{1}}{C_{2}} \cdot \frac{z-\frac{1}{1+\alpha}}{z-\frac{1}{1+\alpha}}=-\frac{C_{1}}{C_{2}}
$$

which is an inverting amplifier. The pole is cancelled by the zero.

Exercise K27

At time t the charge is discribed by

$$
\begin{aligned}
q_{1}(t) & =C_{1} v_{1}(t) \\
q_{2}(t) & =C_{2} v_{2}(t) \\
q_{3}(t) & =C_{3} v_{2}(t)
\end{aligned}
$$

At time $t+\tau$:
Charge at C_{1} and C_{2}

$$
\begin{aligned}
& q_{1}(t+\tau)=q_{1}(t) \\
& q_{2}(t+\tau)=q_{2}(t)
\end{aligned}
$$

C_{3} is charged with the input voltage

$$
q_{3}(t+\tau)=C_{3} v_{1}(t+\tau)
$$

At time $t+2 \tau$:
Total charge on the three capacitances is

$$
q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)
$$

 where

$$
\begin{aligned}
& q_{1}(t+2 \tau)=C_{1} v_{1}(t+2 \tau) \\
& q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau) \\
& q_{3}(t+2 \tau)=C_{3} v_{2}(t+2 \tau)
\end{aligned}
$$

The total charge must be conserved, no charge disappears from the input of the OPamp:

$$
\begin{aligned}
& q_{1}(t+2 \tau)+q_{2}(t+2 \tau)+q_{3}(t+2 \tau)= \\
& \quad=q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau)=
\end{aligned}
$$

$$
=q_{1}(t)+q_{2}(t)+q_{3}(t+\tau)
$$

se the charge expression, and we have

$$
\left(C_{2}+C_{3}\right) v_{2}(t+2 \tau)+C_{1} v_{1}(t+2 \tau)=C_{1} v_{1}(t)+C_{2} v_{2}(t)+C_{3} v_{1}(t+\tau)
$$

which gives

$$
v_{2}(t+2 \tau)-\frac{C_{2}}{C_{2}+C_{3}} v_{2}(t)=\frac{C_{1}}{C_{2}+C_{3}}\left[v_{1}(t)+\frac{C_{3}}{C_{1}} v_{1}(t+\tau)-v_{1}(t+2 \tau)\right]
$$

Let $t=k T$ and $T=2 \tau$. z-transform

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=\frac{C_{1}}{C_{2}+C_{3}} \frac{1+\frac{C_{3}}{C_{1}} z^{1 / 2}-z}{z-\frac{C_{2}}{C_{2}+C_{3}}}=-\frac{C_{1}}{C_{2}+C_{3}} \frac{z-\left(1+\frac{C_{3}}{C_{1}} z^{1 / 2}\right)}{z-\frac{C_{2}}{C_{2}+C_{3}}}
$$

We now see that the output signal is affected by the input signal at each half clock period. Two ways can be used to design a first-order all pass filter.

1) Eliminate $z^{1 / 2}$ by assuming $v_{1}(t)=v_{1}(t+\tau)$ which gives $z^{1 / 2} V_{1}(z)=V_{1}(z)$
2) Eliminate $z^{1 / 2}$ by assuming $v_{1}(t+\tau)=v_{1}(t+2 \tau)$ which gives $z^{1 / 2} V_{1}(z)=z V_{1}(z)$
this gives

$$
H_{1}(z)=-\frac{C_{1}}{C_{2}+C_{3}} \cdot \frac{z-\frac{C_{1}+C_{3}}{C_{1}}}{z-\frac{C_{2}}{C_{2}+C_{3}}} \text { or } H_{2}(z)=-\frac{C_{1}}{C_{2}+C_{3}} \cdot\left(1-\frac{C_{3}}{C_{1}}\right) \frac{z-\frac{1}{1-C_{3} / C_{1}}}{z-\frac{C_{2}}{C_{2}+C_{3}}}
$$

For an all pass filter, if the pole is given by $z=p$, the zero is given by $z=1 / p$. This gives

$$
\frac{C_{1}+C_{3}}{C_{1}}=\frac{C_{2}+C_{3}}{C_{2}} \Rightarrow C_{2}=C_{1} \text { or } 1-\frac{C_{3}}{C_{1}}=\frac{C_{2}}{C_{2}+C_{3}} \Rightarrow C_{1}=C_{2}+C_{3}
$$

Exercise K28

At time t the lower C_{1} is charged

$$
q_{N 1}(t)=C_{1} v_{1}(t)
$$

The upper is shorted.

$$
q_{U 1}(t)=0
$$

At time $t+\tau$ the upper C_{1} is charged

$$
q_{U 1}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

The lower is shorted. The charge will however redistribute to the negative plate at C_{2}. The positive plate at C_{2} will get extra charge from the output of the OPamp. The charge at C_{2} is written as

$$
\begin{aligned}
& q_{2}(t+\tau)=C_{2} v_{2}(t+\tau)=q_{2}(t)+q_{N 1}(t)= \\
& \quad=C_{2} v_{2}(t)+C_{1} v_{1}(t)
\end{aligned}
$$

At time $t+2 \tau$ the operation is practical the same due to the symmetrical capacitances.

$$
q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)=q_{2}(t+\tau)+q_{U 1}(t+\tau)=C_{2} v_{2}(t+\tau)+C_{1} v_{1}(t+\tau)
$$

We see that the input signal is delayed and switched to the output at every half clock cycle We have

$$
v_{2}(t+2 \tau)=v_{2}(t)+\frac{C_{1}}{C_{2}}\left[v_{1}(t+\tau)+v_{1}(t)\right]
$$

And the transfer function is

$$
H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{z^{1 / 2}+1}{z-1}
$$

If we now once again assume that $v_{1}(t)=v_{1}(t+\tau)$ or $v_{1}(t+\tau)=v_{1}(t+2 \tau)$, then

$$
H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{2 z^{-1}}{1-z^{-1}} \text { or } H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{1+z^{-1}}{1-z^{-1}}
$$

Exercise K38

General transfer function for bilinear integrator

$$
H(z)=K \cdot \frac{z-1}{z+1}
$$

At time t the charge distribution is

$$
\begin{aligned}
& q_{1}(t)=C_{1} v_{1}(t) \\
& q_{2}(t)=C_{2} v_{2}(t)
\end{aligned}
$$

$$
q_{3}(t)=0(\text { shorted })
$$

At time $t+\tau C_{3}$ is coupled in parallel with C_{1} and
will take charge from C_{2} and C_{1} :

$$
\begin{aligned}
& q_{1}(t+\tau)=C_{1} v_{1}(t+\tau) \\
& q_{2}(t+\tau)=C_{2} v_{2}(t+\tau) \\
& q_{3}(t+\tau)=C_{3} v_{1}(t+\tau)
\end{aligned}
$$

The charge distribution will be

$$
q_{1}(t+\tau)+q_{2}(t+\tau)+q_{3}(t+\tau)=q_{1}(t)+q_{2}(t)
$$

At time $t+2 \tau$ the total charge at C_{1} and C_{2} is conserved. It will though redistribute due to the change of input voltage.

$$
q_{1}(t+\tau)+q_{2}(t+\tau)=q_{1}(t+2 \tau)+q_{2}(t+2 \tau)
$$

Concludingly, we have

$$
q_{1}(t)+q_{2}(t)=q_{3}(t+\tau)+q_{1}(t+2 \tau)+q_{2}(t+2 \tau), \text { i.e. }
$$

$$
C_{1} v_{1}(t)-C_{1} v_{1}(t+2 \tau)-C_{3} v_{1}(t+\tau)=C_{2}\left[v_{2}(t+2 \tau)-v_{2}(t)\right]
$$

which gives

$$
v_{2}(t+2 \tau)-v_{2}(t)=-\frac{C_{1}}{C_{2}}\left[v_{1}(t+2 \tau)+\frac{C_{3}}{C_{1}} v_{1}(t+\tau)-v_{1}(t)\right]
$$

Suppose $v_{1}(t)=v_{1}(t+\tau)$, hence a sample-and-hold circuit at the input, which eliminated the $z^{1 / 2}$-term in the transfer function. Let $t=k T$ and $2 \tau=T$. z-transform

$$
H(z)=\frac{V_{2}(z)}{V_{1}(z)}=-\frac{C_{1}}{C_{2}} \cdot \frac{z+\left(C_{3} / C_{1}-1\right)}{z-1}
$$

Choosee $C_{3}=2 C_{1}$ and we have

$$
H(z)=-\frac{C_{1}}{C_{2}} \cdot \frac{1+z^{-1}}{1-z^{-1}}
$$

Exercise K37

At time t. The upper capacitor is shorted between ground and virtual ground and the lower capacitor i charged with the input voltage:

$$
q_{1 u}(t)=0 \text { and } q_{1 n}(t)=C_{1} v_{1}(t)
$$

C_{2} has the charge:

$$
q_{2}(t)=C_{2} v_{2}(t)
$$

At time $t+\tau$. The upper capacitor is charged.

$$
q_{1 u}(t+\tau)=C_{1} v_{1}(t+\tau)
$$

The lower capacitor is shorted, all charge is lost to the ground

$$
q_{1 n}(t+\tau)=0
$$

The charge in C_{2} is conserved since no charge can disappear from the input of the OPamp

$$
q_{2}(t+\tau)=q_{2}(t) \operatorname{dvs} C_{2} v_{2}(t+\tau)=C_{2} v_{2}(t) \operatorname{dvs} v_{2}(t+\tau)=v_{2}(t)
$$

Time $t+2 \tau$. The upper capacitor is discharged, but its charge will be redistributed over the lower capacitor and C_{2}. The redistribution is determined by the input voltage. We have

$$
q_{1 u}(t+2 \tau)=0, q_{1 n}(t+2 \tau)=C_{1} v_{1}(t+2 \tau), q_{2}(t+2 \tau)=C_{2} v_{2}(t+2 \tau)
$$

and

$$
-q_{1 n}(t+2 \tau)+\left(-q_{2}(t+2 \tau)\right)=-q_{1 u}(t+\tau)+\left(-q_{2}(t+\tau)\right)
$$

Which gives
$C_{1} v_{1}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t+\tau)=C_{1} v_{1}(t+\tau)+C_{2} v_{2}(t)$
The input signal is sampled-and-held as

$$
v_{1}(t+\tau)=v_{1}(t)
$$

which gives

$$
C_{1} v_{1}(t+2 \tau)+C_{2} v_{2}(t+2 \tau)=C_{1} v_{1}(t)+C_{2} v_{2}(t)
$$

z-transform

$$
C_{1} \cdot(z-1) \cdot V_{1}(z)=C_{2} \cdot(1-z) \cdot V_{2}(z)
$$

and

$$
H(z)=\frac{V_{1}(z)}{V_{2}(z)}=-\frac{C_{2}}{C_{1}} \cdot \frac{z-1}{z-1}=-\frac{C_{2}}{C_{1}}
$$

The circuit is an inverting amplifier. Practically, however, a pole on the unit circle can not be
cancelled by a zero. The circuit has to be used in a feedback loop.

Exercise B10.2

At time t, switch ϕ_{1} is conducting. The charges at C_{1} and C_{2} are given by

$$
q_{1}(t)=C_{1} \cdot v_{1}(t) \text { and } q_{2}(t)=C_{2} \cdot v_{2}(t)
$$

At time $t+\tau$, switch ϕ_{2} is conducting. The charges at C_{1} and C_{2} are given by

$$
q_{1}(t+\tau)=0 \text { and } q_{2}(t+\tau)=C_{2} \cdot v_{2}(t+\tau)
$$

Note that the positive and negative plates of C_{1} are connected. The charge will cancel them selves, therefore

$$
q_{2}(t+\tau)=q_{2}(t)
$$

At time $t+2 \tau$, switch ϕ_{1} is conducting. Now we will have a redistribution of the charge at the negative plate of C_{2} (the one connected to virtual ground at the OPamp input).

$$
\begin{aligned}
& q_{1}(t+2 \tau)=C_{1} \cdot v_{1}(t+2 \tau), q_{2}(t+2 \tau)=C_{2} \cdot v_{2}(t+2 \tau) \text { and } \\
& -q_{1}(t+2 \tau)+\left(-q_{2}(t+2 \tau)\right)=-q_{2}(t+\tau)=-q_{2}(t)
\end{aligned}
$$

This gives

$$
C_{1} \cdot v_{1}(t+T)+C_{2} \cdot v_{2}(t+T)=C_{2} \cdot v_{2}(t)
$$

where $T=2 \tau$. z-transforming the equation gives

$$
\frac{V_{2}(z)}{V_{1}(z)}=H(z)=\frac{C_{1}}{C_{2}} \cdot \frac{z}{1-z}=-\frac{C_{1}}{C_{2}} \cdot \frac{1}{1-z^{-1}}
$$

which is a invering and scaling integrator

Exercises B10.3-4 are very suitable for calculation.

