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3 — Solutions and Comments to Exercises
In this section we present suggested solutions to the exercises given in Section 2.

3.1 — DC analysis

1. DC analysis on a common-source gain stage with cascodes.

We neglect the body effect and channel-length modulation in the DC calculations
(AC analysis is performed in Ex. 9).

We define the effective gate-source voltage of an NMOS transistor as

(1.1)

and, similarly, the effective source-gate voltage of a PMOS transistor as

 (different  for NMOS and PMOS transistors!)

We have the simplified current equation for a saturated transistor

(1.2)

Since the transistor sizes are equal for and , and they have the same
drain current, they will also have the same . Similarly, and will
have the same .

For NMOS transistors (  and )

(1.3)

and for PMOS transistors

(1.4)

(  different for NMOS and PMOS transistors!)

Thus, . is not determined
by the current alone, we also need to know  for . We have

(1.5)

To ensure that  is properly saturated we choose

(1.6)

and thus

(1.7)

We make a similar analysis for the PMOS part and find that

(1.8)

To ensure that  is properly saturated we set

 and find that

The output range is now given by the following relations

(1.9)

V eff n, V GS V T–=
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2⋅≈
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I D

α
------= 0.105 V≈
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α
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α
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V bias 2, V DS 1, V GS 2,+ V DS 1, V eff n, V T+ += =
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V DS 1, V eff n, 0.2+ V=

V bias 2, 2 V eff n,⋅ V T 0.2 V+ + 0.88 V≈=

V bias 4, V DD V eff p, V T+( )– 3.3 0.185 0.62+( )– 2.50 V≈= =

M 4

V SD 4, V eff p, 0.2 V+=
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and

(1.10)

2. DC analysis on a bias circuit.

Here we assume that all transistors are operating in the saturation region and that
the channel-length modulation is neglected. Choose a suitable value of , e.g.,

. The maximum current through the circuit is

(2.1)

The current through all the transistors is equal and

(2.2)

(2.3)

. (2.4)

Moreover,

. (2.5)

Eq. (2.1) and Eq. (2.4) gives

. (2.6)

Eq. (2.1) and Eq. (2.2) gives

. (2.7)

Eq. (2.5) yields

, (2.8)

and from Eq. (2.1) and Eq. (2.3) we obtain

. (2.9)

3. DC analysis on a common-gate amplifier.

a) The transistor is in the cut-off regime as long as no (very
small) current will flow through transistor so the output voltage will be equal
to .

When the input voltage is lower than, but close to, the transistor will be

V out V DD V SD 4, V eff p,+( )–≤ V DD 2 V eff p,⋅ 0.2+( )– 2.73 V≈=

V x
V x 2V=

I D
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-----------≤ 5µA=

I D
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2
-------
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-------- V DD V x V T 1––( )2=

I D
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2
-------

W 2

L2
-------- V x V bias V T 2––( )2=

I D

K3

2
-------

W 3

L3
-------- V bias V T 3–( )2=

V T 2 V T 0 γ 2ΦF V SB– 2ΦF–( )+=

W 3
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--------

2I D

K3 V bias V T 3–( )2
------------------------------------------- 3.3≈=
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------------------------------------------------------ 0.37≈=

V T 2 0.846V=
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-------------------------------------------------------- 0.56≈=
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saturated since , and is close to
. The input voltage for which the transistor enters the linear re-

gion is depending on the value of , and can be computed as follows.

b) The current through transistor  in saturation is

(3.1)

In saturation the current through transistor  must equal .

(3.2)

Solving for  gives the following expression.

(3.3)

The transistor operates in the saturation region when
. Inserting Eq. (3.3) into previous equation and solv-

ing for gives the input voltage where the transition between the saturation
and linear operation appears.

3.2 — AC analysis

4. Derivation of small-signal parameters.

a) In the linear region we have the following expression for the current .

(4.1)

Further we have

(4.2)

(4.3)

is affected by the bulk-source voltage through variations in the threshold volt-
age, i.e.,

(4.4)

We have the following relation for the threshold voltage

(4.5)

yielding

(4.6)

and thus

(4.7)
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This relation is also valid in the saturated region.

b) In the saturated region we have the following expression for

(4.8)

Thus

(4.9)

and

(4.10)

5. Simple gain stages with resistive load.

First considering the common-source stage.

a) The ESSS is shown in Figure 30. Where .

b) The transfer function can be computed by using nodal analysis in the output
node.

(5.1)

The transfer function is

(5.2)

The output resistance can be computed by adding a voltage source between the
output node and ground. Then compute the current delivered by that voltage source
when the input source/sources is zero (  equals zero).

(5.3)

c) The transistor is in the cut-off regime when is below , yielding the out-
put voltage equal to . Increasing the input voltage will give the

I D
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Figure 30: The ESSS of a common-source gain stage with resistive load.
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and the transistor will operate in the saturation region
and the output voltage will decrease quadratically with the input voltage. In-
creasing the voltage further will result in a transistor operating in the linear re-
gion and the output voltage will then decrease linearly with the input voltage.

d) Obviously, . In the saturation region it holds that

. (5.4)

For saturation it is required that

. (5.5)

Combining Eq. (5.4) and Eq. (5.5) yields

. (5.6)

The maximum input voltage is computed with equality in Eq. (5.6), hence

(5.7)

(The solution  is obviously false, since it yields )

a) The ESSS of the common drain, common gate, and CMOS inverter is shown in
Figure 31.

b) Using nodal analysis at the output node gives the following DC gain and out-
put resistance.

c) Common-drain amplifier: The transistor is cut off until .
Then will it be in the saturation region.

Common-gate amplifier: The transistor will be in the linear or saturation region
when the input voltage is low. An increased voltage will result that the transistor
will be cut off.
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Figure 31: The ESSS for the a) common drain and b) common gate
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b)

gm1

gds1 G+
---------------------–

gm1

gm1 gds1 G+ +
------------------------------------

gm1

gds1 G+
---------------------

1
gds1 G+
--------------------- 1

gm1 gds1 G+ +
------------------------------------ 1

gds1 G+
---------------------

M 1 V in V out V T+<



TSTE80 ATIC & TSEI30 ANTIK  Solutions and Comments to Exercises — Page 26

ES, ISY, Linköpings universitet

d)

e) The ESSS of the common-drain circuit with the bulk effect is shown in Figure 32.

The transfer function is given by

(5.8)

The ESSS of the common-gate amplifier when the bulk effect is considered is shown
in Figure 33.

The transfer function is

(5.9)

gm1 in- out gds1 Gin
CL out

gmbs1 - out

Figure 32: The ESSS of the common-drain circuit including the bulk effect.

V out
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----------

gm1

gm1 gmbs1 gds1 Gin+ + +
------------------------------------------------------------=

gds1 Gin
CL out

in

-gm1 in

-gmbs1 in

Figure 33: The ESSS of a common-gate amplifier when the bulk effect is considered.
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6. Common-gate amplifier with non ideal input source.

The small-signal equivalent is shown in Figure 34 where .

Using nodal analysis in the nodes  and  gives the following equations

(6.1)

(6.2)

Solving for  in Eq. (6.1) and inserting it into Eq. (6.2) results in

(6.3)

where  is assumed.

The DC gain is computed by setting and the location of the first pole is
computed from Eq. (6.3) by comparing with the transfer function

(6.4)

The DC gain and the first pole can then be expressed as

(6.5)

(6.6)

b) is connected from node to ground. The nodal analysis in node and
 gives:

Rin 1 Gin⁄=
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gm1 - 1

out

CL

in

1

gds1

Gin

Figure 34: ESSS for the common-gate amplifier valid for low frequencies.
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(6.7)

(6.8)

Solving for  in Eq. (6.8)

(6.9)

Inserting into Eq. (6.7) gives

(6.10)

where

(6.11)

(6.12)

(6.13)

The load capacitance is often much larger than the parasitic capacitances. This re-
sults in that the load capacitor will be give rise to the dominant pole and the para-
sitic capacitances will contribute to the pole located much higher in frequency.
When it is a large difference between the capacitances, the poles will be well sepa-
rated. For well separated poles the following approximation holds.

(6.14)

Comparing Eq. (6.14) and Eq. (6.10) gives the following poles.

(6.15)

(6.16)
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7. Amplifier stages with active load.

a) The ESSS of the four amplifier stages is shown in Figure 35.

The bulk effect is neglected.

b and c) To calculate the DC gain and the dominating pole only the capacitance
 needs to be considered.

Nodal analysis of the common-source amplifier

(7.1)

gives the transfer function

(7.2)

where  is the DC gain and  is the dominating pole.

The output resistance is compute by adding a voltage source at the output, ,
and compute the current delivered from the source when the input source is ze-
roed. This gives  and the output resistance

(7.3)

Nodal analysis for the common-drain amplifier

(7.4)

gm1 in gds1 gds2
CL outin

-gm1 in gds1 gds2 out

in

CL

gds1 outgm1 in

gm2 0- in

CL

gds2

gm1 in- out

gds1 gds2
CL outin- out

Figure 35: The ESSS of the amplifiers with active load. a) Common source, b) common drain, c) common
gate, and d) CMOS inverter
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b)

c)

d)
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----------
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-------------------------------------------–
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1
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---------------–= = =
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gives the transfer function

(7.5)

The output current through the output source equals
and the output resistance

(7.6)

The common-gate amplifier:

(7.7)

gives the transfer function

(7.8)

The output current through the output source equals an the
output resistance

(7.9)

The CMOS inverter

(7.10)

giving the transfer function

(7.11)

The output resistance is given by

(7.12)

Summary:
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------------------------------------------= =
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---------------------------+
------------------------------------=

I x V x gds1 gds2+( )=

rout

V x

I x
------ 1

gds1 gds2+
---------------------------= =

gm1 gm2+( )V in gds1 gds2 sCL+ +( )V out+ 0=
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In principle we can see that in a single stage amplifier the DC gain can approxi-
mately be expressed as and the bandwidth is

.

d) The highest gain is obtained in a CMOS inverter. The circuit with highest
bandwidth is the common-drain amplifier.

8. Current mirrors.

a) The ESSS of the simple current mirror is shown in Figure 36a.

The input resistance is computed by adding a input voltage source to and
computing the current delivered by the source. The output should be terminated
by the resistive load .

(8.1)

We see that if a transistor has a connection between its drain and gate, called di-
ode-connected, the small-signal model will be a resistor with the value
as shown in Figure 36b. The input resistance is

(8.2)

The output resistance is computed by adding a voltage source at the output and
computing the current it delivers. This will give the output resistance equal to

(8.3)

Common drain

Common gate

CMOS inverter

gm1

gm1 gds1 gds2+ +
------------------------------------------

1
gm1 gds1 gds2+ +
------------------------------------------ gm1 gds1 gds2+ +
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------------------------------------------
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1
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CL
---------------------------

gm1 gm2+

gds1 gds2+
---------------------------–

1
gds1 gds2+
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CL
---------------------------

gm in, gout⁄ gm in, rout=
gout CL⁄ 1 routCL( )⁄=

gm1 in gds1

outin

gds2

gm2 in

gm1 gds1

outin

gds2gm2 in

Figure 36: a) The ESSS for the simple current mirror. b) Simplified ESSS for the simple current mirror.

a) b)
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The ESSS of the cascode current mirror is shown in Figure 37.

The input current is given by . The
node voltage can be eliminated from the equations and the output resistance is
given by

(8.4)

The output current is given by

(8.5)

since  and thereby is . The output resistance is given by

(8.6)

The ESSS of the wide-swing current mirror is shown in Figure 38.

The input current equals . The
input resistance is

(8.7)

The output current is given by

(8.8)

The output resistance is

(8.9)
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Figure 37: The ESSS of a cascode current mirror.
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b) The lowest possible of a transistor in the saturation region, , is
. The is expressed as a function of the drain current in

a transistor in the following way.

(8.10)

Solving for  gives

(8.11)

The minimum gate source voltage for a transistor that is operating in the satu-
ration region is

(8.12)

The minimum voltage is derived by determining the minimum voltage required
to ensure that all transistors are operating in the saturation region for each pos-
sible way from ground to the node of interest, not passing directly between the
gate to the drain.

The lowest possible input/output voltage of the simple current mirror is

(8.13)

(8.14)

The lowest possible input/output voltage for the cascode current mirror is

(8.15)

out
in

gm2 in

gm4 - y

y

gm3 - gds4gds3

gds2gds1gm1 in

Figure 38: The ESSS of a wide-swing current mirror.
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(8.16)

The lowest possible input/output/bias voltage for the wide-swing current mirror is.

(8.17)

(8.18)

(8.19)

Summary:

c) The current mirror that is most ideal is the wide swing and cascode current mir-
ror since they have the lowest input resistance and the highest output resistance.
But by looking at the possible input/output voltage the wide-swing current mirror
is best. If the chip area is of concern then the simplest current mirror is the one to

Simple Cascode Wide-Swing

Input imped-
ance

Output imped-
ance

Lowest input
voltage

Lowest output
voltage

Lowest bias
voltage

- - See above

V outmin max V dssat2 V dssat4 V gsmin1 V gsmin3 V gsmin4 V dssat4+–+,+{ }= =

I in

α1
------ V T 1

I in

α3
------ V T 3

I out

α4
---------– V T 4–

I out

α4
---------+ + + + =

I in

α1
------ V T 1

I in

α3
------ V T 3 V T 4–+ + +

V inmin max V gsmin1 V dssat1 V dssat3+,{ }
I in

α1
------ V T 1+= =

V outmin max V dssat2 V dssat4 V dssat1 V gsmin3 V gsmin4 V dssat4+–+,+{ }= =

I in

α1
------

I in

α3
------ V T 3 V T 4–+ +

V biasmin max V dssat1 V gsmin3 V dssat2 V gsmin4+,+{ }= =

max
I in

α1
------

I in

α3
------ V T 3+ +

I out

α2
---------

I out

α3
--------- V T 4+ +,

 
 
 

1
gm1 gds1+
------------------------- 1

gm1
--------- 1

gm3
---------+ 1

gm1
---------

1
gds2
---------- gm4

gds2gds4
--------------------

gm4

gds2gds4
--------------------

I in

α1
------ V T 1+

I in

α1
------ V T 1

I in

α3
------ V T 3+ + +

I in

α1
------ V T 1+

I out

α2
---------

I in

α1
------ V T 1

I in

α3
------ V T 3 V T 4–+ + +

I in

α1
------

I in

α3
------ V T 3 V T 4–+ +
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choose. Depending on the application each of these current mirrors can be the
best choice.

9. Gain stages with cascodes.

a) A gain-boosted common-source amplifier.

b) We first compute the output impedance of a cascode as shown in Figure 39a

with the ESSS as shown in Figure 39b. The current Iout is

(9.1)

The output resistance is

(9.2)

where is the gain of the transistor . The two transistors above can be re-
placed by a resistor with the values of when we are computing the
small-signal characteristics.

The simplified ESSS of the amplifier is shown in Figure 40. The DC gain can be
computed using the following equations.

(9.3)

(9.4)

Solving for  gives the following DC gain.

(9.5)

The DC gain can be expressed as where the output conductance is the
sum of the conductances seen from the output to ground and from the output to

out

gds3gm3 y

gds4

y

���

��

��

���

�	
�

������

������

��

Figure 39: a) A cascode transistor. b) The ESSS of the circuit.

a) b)

I out V ygds4 gm3V y– gds3 V y V out–( )–= =

rout

V out

I out
----------

gm3 gds3 gds4+ +

gds3gds4
------------------------------------------

gm3

gds3gds4
--------------------≈

A3

gds4
----------= = =

A3 M 3
A3 gds4⁄

gm1V in V xgds1 gm2V x V x V out–( )gds2+ + + 0=

gm2–( )V x V out V x–( )gds2 V outG+ + 0=

V out

V out

V in
----------

gm1 gm2 gds2+( )
gds1gds2 G gds1 gds2 gm2+ +( )+
-------------------------------------------------------------------------------– ≈=

gm1

gds1gds2

gm2
-------------------- G+

-------------------------------–
gm1

gds1gds2

gm2
--------------------

gds3gds4

gm3
--------------------+

------------------------------------------------–=

gm1 gout⁄
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the positive supply voltage (the parallel connection of the two output resistances
seen up and down from the output). The cascode transistors are used to enhance the
output resistance by the gain of the cascode transistors, i.e. and
respectively.

The DC gain of the gain-boosted amplifier can be calculated in the same way as the
cascode transistors. The upper part of the transistor together with its small-signal
equivalent is shown in Figure 41

We start to calculate the DC gain of the common-source amplifier to

(9.6)

dd

Figure 40: a) Equivalent low frequency folded cascode amplifier. b) ESSS of the simplified amplifier.

R=A3/gds4

M2

M1

Vbias2

Vin

Vout

CL

gm2(-Vx)

gm1Vin

gds2

gds1

R=A3/gds4

a) b)

Vx

Vout

gm2 gds2⁄ gm3 gds3⁄

dd

dd

M4

M3

M5

M6
Vx

Vz
Vout

Ibias

Vbias3

Figure 41: A part of the gain-boosted cascode transistor.

gm6Vx

gds6+gds5

gds4

gds3
gm3(Vx-Vz) Vout

Vx
Vz

CS amplifier

V z

V x
------

gm6

gds5 gds6+
---------------------------– Acs= =

TSTE80 ATIC & TSEI30 ANTIK  Solutions and Comments to Exercises — Page 37

ES, ISY, Linköpings universitet

Continuing to derive the output resistance by setting up the current delivered by
the output source.

(9.7)

Solving for  and eliminating  gives

(9.8)

The output impedance is increased by the gain of the common-source amplifier,
.

The same type of computation as the one above will give the output DC gain of
the whole circuit. The simplified small-signal schematic for the gain-boosted am-
plifier is shown in Figure 42.

The output resistance

(9.9)

and

(9.10)

The DC gain is given by

(9.11)

c) The parasitic capacitance in the signal path for the amplifier with cascodes is
much lower since we do not have the in the signal path compared with the
amplifier using gain boosting.

The bandwidth is for a single stage amplifier. The output conductance
of the gain boosted amplifier is much less than the one width cascodes. Hence,
the bandwidth of the gain boosted amplifier is much lower than the amplifier
with cascodes.

I out gm3 V x V z–( )– V out V x–( )gds3+ V xgds4= =

V out V x

rout

V out

I out
----------

gds3 gds3 gm3 Acsgm3–+ +

gds3gds4
------------------------------------------------------------------ ≈= =

Acsgm3

gds3gds4
--------------------

gm5

gds5 gds6+
---------------------------

gm3

gds3gds4
--------------------=

Acs

Figure 42: A simplified ESSS of the gain-boosted amplifier.

gm1Vin

rout,down

rout,up

rout up,
gm5

gds5 gds6+
---------------------------

gm3

gds3gds4
--------------------=

rout down,
gm8

gds8 gds7+
---------------------------

gm2

gds2gds1
--------------------=

V out

V in
----------

gm1

gout
---------

gm1

1
rout up,
---------------- 1

rout down,
---------------------+

--------------------------------------------≈ ≈

Cgs8

gout CL⁄
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Summary:

where .

3.3 — Differential gain stage

10. A single-ended differential gain stage.

a) The OR (output range) is the possible swing at the output so that all transistors
are operating in the saturation region.

(10.1)

(10.2)

The output range is also dependent on the input voltage which results that

(10.3)

which results in a minimum output voltage for all transistors operating in the sat-
uration region equal to

(10.4)

The common-mode range is the possible input swing.

(10.5)

DC gain First pole (bandwidth)

Common source

Common source
with cascodes

Gain-boosted
common-source
amplifier

gm1

gds1 gds2+
---------------------------–

gds1 gds2+

CL
---------------------------

gm1

gds1gds2

gm2
--------------------

gds3gds4

gm3
--------------------+

------------------------------------------------–
gds1gds2

gm2
--------------------

gds3gds4

gm3
--------------------+

CL
------------------------------------------------

gm1

gout
---------–

gout

CL
---------

gout

gds1gds2

gm2
--------------------

gds8 gds7+

gm8
---------------------------

gds3gds4

gm3
--------------------

gds5 gds6+

gm5
---------------------------+=

V out max, V dd V sdsat4– V dd

I D4

α4
--------– V dd

I D5

2α4
---------–= = =

V out min, V dssat5 V dssat2+
I D5

α5
--------

I D2

α2
--------+

I D5

α5
--------

I D5

2α2
---------+= = =

V out min, V in V gs2 V ds2+– V in V T 2–= =

V out min, max
I D5

α5
--------

I D5

2α2
---------+ V in V T 2–,

 
 
 

=

V in min, V dssat5 V gs1+
I D5

α5
--------

I D5

2α1
--------- V T 1+ += =
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(10.6)

The ESSS of the differential gain stage is shown in Figure 43.

It is assumed that transistors M1 and M2 are equally sized, as well as transistors
M3 and M4. If the currents in both branches of the differential gain stage are
equal, then , , , and . The following ex-
pressions hold for the circuit in Figure 43:

, (10.7)

,

(10.8)
and

. (10.9)

Solving for  yields

. (10.10)

Assuming that and dividing both the numerator and denomina-
tor of Eq. (10.10) with  yields

(10.11)

To compute the output resistance, , we connect an AC voltage source, ,
to the output node and set (and, of course, neglect ). The cur-
rent delivered by  is denoted . The following equations hold:

, (10.12)

, (10.13)

V in max, V DD V gs3– V dssat1– V gs1+= =

V DD

I D3

α3
--------– V T 3– V T 1+ V DD

I D5

2α3
---------– V T 3– V T 1+=

gds1
gm1(Vn-Vy)

gm2(Vp-Vy)

gm3+gds3
gds4

gds2 CL

Vx Vout

-gm4Vx

Figure 43: The ESSS of a single-ended differential gain stage.

Vy

gm1 gm2≈ gds1 gds2≈ gm3 gm4≈ gds3 gds4≈

gm3 gds3+( )V x gm1 V n V y–( ) gds1 V x V y–( )+ + 0=

gm1 V n V y–( ) gds1 V x V y–( ) gm1 V p V y–( ) gds1 V out V y–( )+ + + 0=

gm1 V p V y–( ) gds1 V out V y–( ) gm3V x V out sCL gds3+( )+ + + 0=

V out

V out

gds3 2gm3+( )gm1 V p V n–( )
2 gds1 gds3+( ) gds3 gm3+( ) sCL gds1 2 gds3 gm3+( )+( )+
------------------------------------------------------------------------------------------------------------------------------------------=

gm3 gds3 gds1,»
2gm3

V out

gm1 V p V n–( )
gds1 gds3 sCL+ +
-------------------------------------------≈

rout V out
V p V n 0= = CL

V out I out

I out gm3V x– gds3V out– gm1V y gds1 V out V y–( )–+ 0=

2gm1V y– gds1 V x 2V y– V out+( )+ 0=
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and

. (10.14)

Solving for  yields

, (10.15)

under the assumption that . Hence, the output resistance is

(10.16)

and the output impedance is

. (10.17)

b) The maximum current that can be delivered to the load capacitor is . Hence,

. (10.18)

11. Differential stage with passive load.

Here we would like to derive the differential and common-mode gain. The small-sig-
nal schemes are a little bit different.

a) The circuit is fully differential and thereby it is sufficient to compute the differ-
ential gain for half the circuit shown in Figure 44a. The differential gain is then

(11.1)

The second equality comes from the fact that and and

gm1V y– gds1 V x V y–( ) gm3 gds+( )V x+ + 0=

I out

I out

2 gds1 gds3+( ) gds3 gm3+( )
gds1 2 gds3 gm3+( )+

------------------------------------------------------------------V out gds1 gds3+( )V out≈=

gds1 2 gm3 gds3+( )«

rout

V out

I out
---------- 1

gds1 gds3+
---------------------------≈=

zout
1

gds1 gds3 sCL+ +
-------------------------------------------≈

I bias

SR
I bias

CL
-----------≈

Figure 44: The ESSS of a differential gain stage for computing a) the differential gain (half circuit) and
b) the gain from the common-mode input to the common-mode output voltage.

GL

gm1Vp gds1

Voutn
Voutn Voutp

gds3

gds1 gds2

GL GL

gm1(Vp-Vc)

gm2(Vn-Vc)Vc

Virtual ground for
differential input
signals

Adiff

V outp V outn–

V p V n–
--------------------------------

V outn

V p
-------------–

gm1

gds1 GL+
-----------------------= = =

V outp V outn–= V p V n–=
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we have a fully differential gain stage. Nearly the same computation as in Exer-
cise 10.

b) The gain from the common-mode input voltage to the common-mode output
voltage is computed using nodal analysis in the ESSS shown in Figure 44b. The
nodal analysis is performed in nodes ,  and gnd.

(11.2)

(11.3)

(11.4)

Solving for  in Eq. (11.4) gives

(11.5)

Adding the Eq. (11.2) and Eq. (11.3) gives

(11.6)

The design is fully symmetrical (i.e. transistor is equal to yielding the
same transconductances, , and output conductances, ). The Eq. (11.6) is
then simplified to

(11.7)

Combining Eq. (11.5) and Eq. (11.7) gives the gain

(11.8)

c) The power supply rejection ration (PSRR) from the negative supply is defined
as

(11.9)

The differential gain is already computed so it is just the differential output vari-
ations due to a noisy ground line that is of interest. The small-signal model is

V outn V outp

V outnGL V outn V c–( )gds1 gm1 V p V c–( )+ + 0=

V outpGL V outp V c–( )gds2 gm2 V n V c–( )+ + 0=

V outnGL V outpGL V cgds3+ + 0=

V c

V c

GL

gds3
---------- V outp V outn+( )–=

V outp V outn+( )GL V outpgds2 V outngds1 V pgm1 V ngm2+ + + + =

gds1 gds2 gm1 gm2+ + +( )V c

M 1 M 2
gm gds

V outp V outn+( ) gds GL+( ) V p V n+( )gm+ 2 gds gm+( )V c=

Acm cm,

V outp V outn+

2
---------------------------------

V p V n+

2
--------------------

---------------------------------
gds3gm

gds3 gds GL+( ) 2GL gds gm+( )+
--------------------------------------------------------------------------------–= =

PSRRn Adiff

V outp V outn–( ) 2⁄
V gnd

-------------------------------------------- 
 ⁄=
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shown in Figure 45. The small-signal source is . Nodal analysis in nodes , ,

and  gives the following equations.

(11.10)

(11.11)

We take the difference between Eq. (11.10) and Eq. (11.11) and assuming that tran-
sistor  is matched to .

(11.12)

This yields that the gain from the negative supply to the differential output is zero
and thereby the negative PSRR is infinite.

3.4 — OTAs and OPs

12. OP and OTA.

An operational amplifier (OP) has ideally zero output impedance and is thus suit-
able for driving resistive loads, since in this way there is no voltage division between
the output impedance and the load resistance. Resistive loads are most often used
off-chip, but also on-chip in, e.g., active RC filters.

The operational transconductance amplifier (OTA), however, has ideally infinite
output impedance and is thus suitable for driving capacitive loads, as is often the
case in “on-chip” situations, such as Gm-C filters or sample-and-hold circuits.

13. Current mirror OTA.

We start by some useful relations

Figure 45: The ESSS for computing the negative power supply noise gain to the differential output.

GL GL

-gm1Vc -gm2Vc
gds1 gds2

gds3

VoutpVoutn

Vn

Vc

gm3(-Vn)

Vn

V n V n V p

V c

V outnGL V outn V c–( )gds1 gm1 V c–( )+ + 0=

V outpGL V outp V c–( )gds2 gm2 V c–( )+ + 0=

V c– gm1 V c– gm2 V outn V c–( )gds1 V outp V c–( )gds2 V n V c–( )gds3 V ngm3+ + + + 0=

M 1 M 2

V outn V outp–( ) GL gds+( ) 0=
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(13.1)

Which gives

(13.2)

Furthermore,

(13.3)

The total power dissipation is

(13.4)

Where  is the current-mirror gain. Solving for  gives

(13.5)

From Johns&Martin (pages 273 -)

(13.6)

(13.7)

(13.8)

Solution:

We start with the slew-rate specification to determine the value. Solving for
 in Eq. (13.6) gives

(13.9)

When is chosen we get and we determine by combining Eq.
(13.7) and Eq. (13.2) yielding

(13.10)

From Eq. (13.8) we get the required output resistance .

The output stage is a common-source amplifier with cascodes like the one in the
Ex. 9. The output conductance is given by the parallel combination of the nmos
and pmos resistances. Here we have chosen the size of the output resistances of
the nmos and pmos transistors equal to . The pmos resistance
is given by

gm 2αV eff 4α I D≈ ≈ 2µCox
W
L
----- I D=

W
gm

2 L

2µCoxI D
----------------------≈

gds λ I D≈

Pdiss V dd I tot V dd I b
3
2
--- K

2
----+ 

 = =

K I b

I b
2

3 K+
-------------

Pdiss

V dd
-----------=

SR
K I b

CL
---------- 2

Pdiss

CLV dd

---------------- K
3 K+
-------------= =

ωu

K gm1

CL
--------------≈ gm1

CL

K
-------ωu≈⇒

A0 K gm1rout= rout⇒
A0

K gm1
--------------=

K
K

K
3SR

2Pdiss

V ddCL
---------------- SR–

------------------------------ 2.36≈=

K I b 170µA≈ W 1

W 1

CL
2 ωu

2L

2µK
2
CoxI D1

--------------------------------
CL

2 ωu
2L

K
2µCoxI b

------------------------- 58µm≈= =

rout 3.18MΩ≈

r p rn 2rout= =
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(13.11)

Similarly

(13.12)

Here we have assumed that the size of transistors is equal to and is
equal to  and thereby they will have the same small-signal parameters.

The DC current through the output stage is given by and we know
that . These two expression together with Eq. (13.11) and Eq. (13.12)
gives

(13.13)

(13.14)

Solving for the widths by using Eq. (13.1) gives

(13.15)

(13.16)

(13.17)

(13.18)

14. A simplified model of a two-stage operational transconductance amplifier.

a) A compensation circuit can for example consist of a capacitor, or a capacitor and
a resistor. For a useful compensation circuit there can not be a DC path between the
nodes of the compensation circuit. We use the approximation and assume
that and are equally sized, and that and are equally sized. Further,
the bulk effect is neglected.

(14.1)

(14.2)

(14.3)

(14.4)

(14.5)

(14.6)

b) The small-signal properties are calculated using nodal analysis in the nodes

r p
1

gds8
----------

gm10

gds10
------------

gmp

gdsp
2

---------- gmp⇒ r pgdsp
2= = =

rn
1

gds14
------------

gm12

gds12
------------

gmn

gdsn
2

---------- gmn⇒ rngdsn
2= = =

M 8 M 10 M 12
M 14

I D I bK 2⁄=
gds λ I D=

gmp 2rout λ pI bK 2⁄( )2 1.5mS≈=

gmn 2rout λnI bK 2⁄( )2 0.544µS≈=

W 8 W 10

gmp
2

L

2µ pCoxI D
------------------------- 113µm≈= =

W 12 W 14

gmn
2

L

2µnCoxI D
------------------------- 4.8µm≈= =

W 3 W 4 W 5 W 6 W 7 W 9

W 8

K
-------- 48µm≈= = = = = =

W 11 W 13

W 12

K
---------- 2µm≈= =

gm gds»
M 1 M 2 M 3 M 4

gI gds2 gds4+=

gII gds6 gds7+=

gmI gm1 gm2= =

gmII gm7=

CI Cgs7 Cds4 Cdb4 Cds2 Cdb2 Cgb7+ + + + +=

CII CL Cds7 Cdb7 Cds6 Cdb6+ + + +=

V x
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and .

(14.7)

(14.8)

Solving for  in Eq. (14.8) and inserting it into Eq. (14.7) gives

We simplify the expression above by assuming that and
, yielding

(14.9)

Eq. (14.9) can be used to get the DC gain, poles and zero.

(14.10)

(14.11)

(14.12)

(14.13)

The zero is located in the right half plane (RHP).

The unity-gain frequency is approximately given by the expression if
the poles are well separated.

(14.14)

Q.E.D.

c, d, and e) Recall that and . The DC gain, unity-
gain frequency and the first pole can be expressed as
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(14.15)

(14.16)

(14.17)

(14.18)

15. A two-stage OTA without compensation circuit.

The ESSS of the two-stage amplifier is shown in Figure 46. The following assump-

tion has been used,  and no bulk effect.

Since there is no connection between the first stage and the second stage, i.e. no
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 increased Decreased Increased Increased
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Figure 46: The ESSS of an ordinary two-stage amplifier with no compensation.
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component between the node and , the transfer function can be comput-
ed directly by the following expression

(15.1)

where , , , ,
, and .

The DC gain is

(15.2)

which gives that

(15.3)

b) The dominant pole is located at

(15.4)

if the load capacitor is assumed to be much larger than the capacitive parasitics.
The non dominant pole is located at

(15.5)

c) The unity-gain frequency

(15.6)

The phase margin is defined as .

(15.7)

d) An ideal operational amplifier has zero output impedance. To decrease the
output impedance we have to compute the output resistance of the amplifier.
Adding a voltage source at the output and calculating the current delivered by
the source according to the following

(15.8)

The output resistance is, thus,

(15.9)

The output resistance is decreased if the current through the output stage is in-
creased. Another way to decrease the output resistance is to add a buffer stage,
for example a common-drain amplifier, at the output of the circuit.
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16. Compensation of a two-stage OTA.

a) The resistor value can be choose so that the compensation zero is located at infin-
ity, nulling resistor. The other way is to use the lead compensation method where
the zero is placed slightly higher in frequency than the unity-gain frequency.

b) Starting with the Miller capacitor compensation:

The simplified ESSS is shown in Figure 47. The transfer function is calculated us-

ing nodal analysis in the nodes  and .

(16.1)

(16.2)

Solving for  in Eq. (16.2) and inserting it into Eq. (16.1) gives

Some simplification can be in place. , , .

(16.3)

The above equation can be used to get the DC gain, poles and zero.

(16.4)

(16.5)

(16.6)

(16.7)

The zero is located in the right hand plane (RHP).

The unity-gain frequency is approximately give by the expression if the
poles are well separated.

gmIVin
gmIIVx

gI gII

CIICI

Vout

Vx

Figure 47: The ESSS of an ordinary two-stage amplifier with compensation.

V x V out

gm1V in V x gI sCI+( ) V x V out–( )sCc+ + 0=

gmII V x V out gII sCII+( ) V out V x–( )sCc+ + 0=

V x

V out

V in
---------

gmI gmII sCc–( )
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(16.8)

The resistor and capacitor (lead) compensation is shown in Figure 48. Nodal

analysis in the nodes ,  and  gives the following equations.

(16.9)

(16.10)

(16.11)

Solving this system of equations gives

(16.12)

where

(16.13)

(16.14)

(16.15)

(16.16)

The above expressions can be simplified by , , , and

(16.17)

(16.18)

The DC gain is

(16.19)

The first pole is well separated from the other ones.

(16.20)

The zero is located at

ωu

gmI

gI
--------

gmII

gII
----------

gI gII

gmII Cc
-----------------≈

gmI

Cc
--------=

Figure 48: The ESSS of a two-stage amplifier compensated with a resistor and a capacitor.
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(16.21)

The unity-gain frequency is

(16.22)

When the compensation circuit is inserted the first pole will decrease in frequency
at the same time as the DC gain is not changed. This will result in a decreased uni-
ty-gain frequency and a more stable amplifier.

c) To increase the phase margin of the system we need to place the compensation
zero of the circuit at a frequency higher than the unity-gain frequency.
gives

(16.23)

which can be rearranged according to

(16.24)

If  then we will have a zero in the left hand plane.

17. A folded-cascode OTA.

For symmetrical fully differential circuits with only a differential input signal, the
node at the source of M5 is small-signal ground. Further, the circuit is a fully differ-
ential gain stage and thereby it is sufficient to compute the small-signal transfer
function of half the circuit.
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The equivalent small-signal model is shown in Figure 49.

Performing nodal analysis in the nodes , , and results in the following
equations

(17.1)

Solving for  in the system of equations gives

(17.2)
dividing by the two expressions within the parenthesis in the numerator and as-
suming that  gives the following expression

(17.3)

The DC gain is extracted from Eq. (17.3).

(17.4)

and the first pole is given by

(17.5)

b) The phase margin is increased if the ratio between the second pole and the uni-
ty-gain frequency is increased. The unity-gain frequency can be expressed as

gds3

gm1 in gds1
gm gds

-gm y gds
CL

gds10

y

out

Figure 49: ESSS for the folded-cascode amplifier.
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(17.6)

where is the current through transistor . The second pole is given in the
exercise to be

(17.7)

where is the current through transistors , and . The expression
for the ratio between the second pole and the unity-gain frequency is given by

(17.8)

Further, the DC gain can be expressed as

(17.9)

From Eq. (17.8) and Eq. (17.9) the solution can be computed.

The phase margin can be increased if the area is limited by for example:
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• Increasing  the drawbacks will be higher power consumption and lower DC
gain.

The phase margin can be increased if the power is critical by for example:

• Increasing , the drawbacks is decreased slew rate and unity-gain frequency, but
the DC gain will not be changed.

• Decrease , the drawback is decreased DC gain, no changes to the unity-gain fre-
quency or the slew rate.

The phase margin can be increased if the unity-gain frequency and the power
consumption is critical for example by:

• Decrease , the drawback is decreased DC gain, no changes to the unity-gain fre-
quency or the slew rate.

3.5 — Noise in CMOS circuits

18. Noise in a multi-stage amplifier.

a) In Figure 50(b) the small-signal equivalent for the circuit is shown. Further,

Figure 50: (a) Multi-stage circuit, (b) small-signal equivalent and (c) superposition principle.
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the gain for each gain stage is computed to

;  and (18.1)

The total output noise is now given by superpositioning the different noise contri-
butions according to

(18.2)

where

(18.3)

By combining Eq. (18.1), Eq. (18.2) and Eq. (18.3) we get

(18.4)
and with all equal and all transistors equally sized -> equal , , and

we get

(18.5)
The equivalent output noise power is computed as the integral of the spectral den-
sity over the frequency spectrum. This is here approximated using the noise band-
width concept. Hence, the output noise power is

(18.6)

b) The total output noise scales with  as

;( ,

), (18.7)

i.e., increasing  decreases the equivalent output noise power.

The DC gain of the circuit is given by
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, (18.8)

i.e., the DC gain will be lower for a larger .

The bandwidth of the circuit is approximately given by the dominating pole be-
cause . This pole is computed from

, (18.9)

i.e., the pole is given by

. (18.10)

Hence, the bandwidth scales as  -> larger bandwidth for a larger .

c) From Eq. (18.2) we can see that amplifies all noise sources, i.e., this stage
should have the smallest gain. on the other hand only amplifies the first noise
source and should therefore have the largest gain.

19. Noise in CMOS circuits.

a) The equivalent small-signal model for the circuit is shown in Figure 51.

To compute the equivalent output noise power the transfer function from to
and from to is computed. We start by setting up the equations re-

quired to compute the transfer function from the input to the output.

(19.1)

(19.2)

Solving for  by eliminating  gives the following transfer function

(19.3)
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Figure 51: ESSS for the source-degenerated CS stage. a) Input to output. b) bias to output.
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The equations for the transfer function between  and  is given by

(19.4)

(19.5)

Solving for  by eliminating  results in

(19.6)

The rms output noise is given by

(19.7)

where

(19.8)

and

(19.9)

The last two equations comes from the fact that the thermal noise power of a tran-
sistor is modelled as a gaussian white noise source.

The two integrals in Eq. (19.7) can be calculated using the concept of noise band-
width which results in the following computation.

(19.10)

(19.11)

b) Relevant design parameters are for example the current through the circuit and
the size of the transistor.

Rewriting the Eq. (19.11) with the design parameters yields
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(19.12)

The DC gain from the input to the output is given by

(19.13)

and the unity-gain frequency is given by

(19.14)

The equivalent output noise power can be reduced by:

• Increase the bias current -> Decreased DC gain, Increased unity-gain frequency,
and Increased slew rate.

• Decreased  -> No change to the DC gain, unity-gain frequency or slew rate.

• Decrease  -> No change to the DC gain, increased unity-gain frequency and no
change to the slew rate.

20. Noise in an amplifier.

a) The ESSS is shown in Figure 52.

We have to calculate the transfer function from the gate of transistor M1 to the
output, H1, from transistor M2 to the output, H2, and from the  to

the output, H.

(20.1)

According to exercise 2 the poles of the transfer function can be extracted direct-
ly.

(20.2)

and

(20.3)
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Figure 52: The ESSS of the noisy circuit

gm2Vgs2

V in

H 1
gm1gm2

gds1gds2 s gds1CL gds2Cgs2+( ) s2CLCgs2+ +
---------------------------------------------------------------------------------------------------------------=

p11

gds2

CL
----------≈

p12

gds1

Cgs2
-----------≈



TSTE80 ATIC & TSEI30 ANTIK  Solutions and Comments to Exercises — Page 58

ES, ISY, Linköpings universitet

Continuing with the transfer function from the gate of M2 to the output.

(20.4)

The transfer function from  to the output is

(20.5)

The spectral density of the output can be calculated as

(20.6)

where

(20.7)

The noise power at the output can now be calculated according to the equation be-
low.

(20.8)

If we do not like to perform the integration we can use the concept of noise band-
width (see chapter 4 in Johns&Martin). The integral of a one pole system (or a sys-
tem with well separated poles) is equivalent to the integral of a rectangle with the
width of the dominant pole divided by four.

(20.9)

b) Derive the noise voltage that can be referred to the input.

The input referred noise voltage can be obtain by dividing the output referred noise
voltage by .

(20.10)

This gives the answer

(20.11)

c) Propose one way to increase the maximum signal-to-noise ratio, SNR in the cir-
cuit. What will happen to the DC gain, unity-gain frequency, bandwidth and the
phase margin of the circuit?

The gain, p1, p2, of the circuit are already derived. Assume that the input volt-
age source is white.

(20.12)
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(20.13)

(20.14)

(20.15)

(20.16)

(20.17)

(20.18)

The above five equations shows that will happen if a parameter is changed. Re-
member that

(20.19)

21. Noise in a common-source amplifier biased by a current mirror.

a) The spectral density function of for the resistor is given by

(21.1)

The ESSS is shown in Figure 53.

We have to calculate the transfer function from the drain of transistor M1 to the
output, H1, from transistor M2 to the output, H2, from transistor M3 to the out-
put, H3, and from the resistor to the output, H4.

Consider a current source at in parallel with transistor M1 this will give a trans-
fer function from that current source to the output according to

Change noise A0 p1 unity-gain
phase

margin

Increase
W1

decreases Increases no change increases decreases

increase I1 decreases decreases no change decreases increases

Increase
W2

decreases increases no change increases decreases

decrease I2 decreases increases decreases decreases increases
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-----------≈
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W 2L1L2
--------------------∝
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(21.2)

the pole is located in

(21.3)

Continuing with the transfer function from the noise current source in transistor
M2 to the output. This gives that .

The transfer function from M3 to the output is given by

(21.4)

The transfer function from the resistor to the output is given by

(21.5)

The spectral density function of the output can be calculated as

(21.6)

where

(21.7)

The noise power at the output can now be calculated according to

(21.8)

If we do not like to perform the integration we can use the concept of noise band-
width (see chapter 4 in Johns&Martin). The integral of a one pole system (or a sys-

d1
2gm1 in

gds1
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d2
2

-gm2
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2
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CL

gm3 gds3

2

Figure 53: The ESSS of the noisy circuit.

H 1 1
gds1 gds2 sCL+ +
-------------------------------------------–=

p1

gds1 gds2+

CL
---------------------------=

H 2 H 1=

H 3

V out

V x
----------

V x

I nM 3
------------

gm2

gds1 gds2 sCL+ +
-------------------------------------------–

1

gds3 gm3
1
R
---+ +

------------------------------------= =

H 4

V out

V x
----------

V x

I R
------

gm2

gds1 gds2 sCL+ +
-------------------------------------------–

1

gds3 gm3
1
R
---+ +

------------------------------------= =

Sout f( ) H 1 f( ) 2I
2

n1 H 2 f( ) 2I
2

n2 H 3 f( ) 2I
2

n3 H 4 f( ) 2I
2

R+ + +=

I ni
8kT

3
----------gmi=

V out
2 Sout f( ) fd

0

∞

∫=

TSTE80 ATIC & TSEI30 ANTIK  Solutions and Comments to Exercises — Page 61

ES, ISY, Linköpings universitet

tem with well separated poles) is equivalent to the integral of a rectangle with
the width of the dominant pole divided by four.

(21.9)

b)

• Increase the load capacitor. This will decrease the unity-gain frequency of the
amplifier, but the gain will not change.

• Decrease the resistance R. This will increase the current through transistor M3 and
thereby through all transistors. The output noise voltage is approximately propor-
tional to the inverse of the square root of the current through transistor M1.

 is assumed. Increasing the current will decrease the DC gain of the cir-
cuit but increase the unity-gain frequency.

• Decrease the size of M1. Decreases the DC gain and the unity-gain frequency.

• Decrease the size of both M2 and M3 => approximately constant current. No change
will happen to neither the DC gain nor the unity-gain frequency.

c) The ESSS is the same as in Figure 53. The transfer function H1 and H2 will
not be affected, but H3 and H4 will be changed.

(21.10)

(21.11)

The dominating pole of both H3 and H4 are approximately

(21.12)

Using the same way to calculate the output noise as in 3a) gives

3.6 — Continuous-time filters

22. Butterworth LP-filter.

From the specification we get that dB at krad/
s and that dB at  krad/s.

Nomogram and formulas gives us a filter order of  (page 27 and 25).

According to the “Tabell och Formelsamlingen” at page 23 the in-resistance for
the voltage supply is normalized to . This gives us the refection factor

.
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From the table at page 28 ( ) we get the normalized values:

, ,

Which are de normalized according to and which finally gets
us:

, ,

23. Chebychev LP filter.

The specification is given as:

 rad/s,  rad/s, , .

A filter of Chebyshev I type shall be implemented, with lowest possible order that
meets the specification above. The transfer curve is normalized giving us the max-
imal value . By using that and the information given by the specification we
get:

dB and dB (23.1)

By using a nomogram we can derive the filter order but it can also be calculated as

(23.2)

We also know that we shall implement a current-mode filter and that
. The ripple can be derived to be approximately dB. This

means that we shall use the closest lower value given by the table (= 1dB, page 36).
We read the component values – and since we have a current mode filter and we
have an odd filter order ( ) the first component must be a capacitance (page
23).

The values are de normalized, which
gives us:

(23.3)

(23.4)

(23.5)
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ωc 1000= ωs 2000= Z L 1kΩ= Zi 125Ω=

H 0 1=

Amax 20 1.2log 1.58≈= Amin 20 1 0.1⁄( )log 20= =

N acosh 100.1Amin 1–

100.1Amax 1–
----------------------------- acosh

ωs

ωc
------ 

 ⁄ 2.58≈ 3= =

r Zi Z L⁄ 1 8⁄= = 1.6

N 3=

Zi

ZLC1

L2 C3

I

C1n 12.5563=

L2n 0.1657=

C3n 8.8038=

C1

C1n

ω0Z L
------------- 12.5563

1000 1000⋅
---------------------------- 12.5563µF= = =

L2

Z LL2n

ω0
--------------- 1000 0.1657⋅

1000
--------------------------------- 0.1657H= = =

C3

C3n

ω0Z L
------------- 8.8038µF= =
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24. Butterworth BS-filter.

From the text we get the following specification.

First we transform the BS-specification to an LP-specification. According to page
67 in “Tabell och Formelsamlingen” we get:

Nomogram, (the requirement on the attenuation is the same as for the BS spec-
ification) and the transformed frequencies gives the filter order N=3. We now get
the normalized element values from table (r=1) and we de normalized them ac-
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cording to page 22 in “Tabell och Formelsamlingen” :

Now we can transform our LP-filter back to the specified BP-filter according to page
67 in “T&F”, which gives us the final BS-filer:

25. A doubly resistive terminated ladder network.

The solution is much the same as for Exercise 1.3, but since it is not specified which
filter type to use it could be interesting to se how the filter order differs between the
different filter types. First we transform the BS-specification to an LP-specification
according to:

Now we can use either a nomogram or some computer based
program, e.g, Matlab to derive the different filter orders.

The following Matlab code can be used to derive the filter orders
for a Butterworth-, Chebyshev I-, and a Cauer-type filter.

% Filter specification

Wc = 2*pi*1e3;

Ws = 6*pi*1e3;

Amax = 1;

Amin = 40;

% Filter order for a Butterworth-type filter

NBW = buttord(Wc, Ws, Amax, Amin,’s’)

> NBW = 5

% Filter order for a Chebyshev I-type filter

NCI = cheb1ord(Wc, Ws, Amax, Amin,’s’)

R0 100, ω0 Ω2= =( )

R 100Ω=

L1 0.1H=

L3 0.1H=

C2 20µF=




R 1=

L1 1=

L3 1=

C2 2=





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C2 R
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R
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L2
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L3

C3 C2

R R 100Ω=

L1 L3 100mH= =

C1 C3 3.13µF= =

C2 20µF=

L2 15.6mH=








ωI
2 4π2 0.9 9 106⋅ ⋅ ⋅=

Ω2 2π 103 [rad/s]⋅=

Ω3 2π 3⋅ 103 [rad/s]⋅=





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> NCI = 4

% Filter order for a Cauer-type filter

NCA = ellipord(Wc, Ws, Amax, Amin,’s’)

> NCA = 3

Here we can see that for the given specification the Cauer-type filter gives the
lowest filter order (N=3) followed by the Chebyshev I-type filter (N=4) and finally
the Butterworth-type filter (N=5).

3.7 — Switched Capacitor Circuits

26. Switched capacitor circuit.

a) Here we use the charge analysis. The SC circuit is shown for both clock phases
in Figure 54.

Using the charge analysis in the circuit starting at time t (clock phase 1)

(26.1)

(26.2)

At time (clock phase 2)

(26.3)

(26.4)

At time (clock phase 1)

(26.5)

(26.6)

Another equation is required to be able to compute the transfer function. This
equation comes from the charge conservation. In clock phase 2 the charge of the
two capacitors can not disappear since the charge can not be discharged through
the opamp input terminals. This means that the charge on the capacitors at the
end of clock phase 1 is equal to the charge of the capacitors during the whole clock
phase 2.

(26.7)

The charge of at the time is equal to the charge of at time
since no charge can be given by the opamp input.

(26.8)

Figure 54: The SC circuit in both clock phases.

C1
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V2 V2

clock phase 1 clock phase 2

q1 t( ) V 1 t( ) 0–( )C1=

q2 t( ) V 2 t( ) 0–( )C2=

t τ+

q1 t τ+( ) 0 0–( )C1=

q2 t τ+( ) V 2 t τ+( ) 0–( )C2=

t 2τ+

q1 t 2τ+( ) V 1 t 2τ+( ) 0–( )C1=

q2 t 2τ+( ) V 2 t 2τ+( ) 0–( )C2=

q1 t( ) q2 t( )+ q1 t τ+( ) q2 t τ+( )+=

C2 t τ+ C2 t 2τ+

q2 t τ+( ) q2 t 2τ+( )=
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Inserting the above equations into Eq. (26.7) gives

(26.9)

To compute the transfer function we have to take the Z-transform of both sides.

(26.10)

Solving for  gives

(26.11)

This is a non inverting discrete-time accumulator (compare continuous-time inte-
grator) with a delay of one clock period .

b) Each switch and capacitor has parasitic capacitances connected to ground. In
Figure 55 the parasitics are shown.

is connected between the ideal input and ground and will not change the trans-
fer function.

is connected between ground and ground and thereby not change the transfer
function.

is connected between the ideal input and ground or shorted to ground. No effect
on the transfer function.

 Connected to ground. No effect on the transfer function.

is connected between ground and virtual ground thereby not changing the
transfer function.

is connected to the ideal operational amplifier and ground not changing the
transfer function.

is connected to either ground or virtual ground and thereby not changing the
transfer function.

V 1 t( )C1 V 2 t( )C2+ V 2 t τ+( )C2 V 2 t 2τ+( )C2= =

V 1 z( )C1 V 2 z( )C2+ V 2 z( )zC2=

V 2 z( ) V 1 z( )⁄

V 2 z( )
V 1 z( )
--------------

C1

C2
------ 1

z 1–
-----------

C1

C2
------ z

1–

1 z
1–

–
----------------= =

T 2τ=

Figure 55: A non inverting accumulator with parasitics.
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The transfer function is not sensitive to parasitics.

27. Switched capacitor circuit.

a) Here we use the charge analysis. The SC circuit is shown for both clock phases
in Figure 56.

Using the charge analysis in the circuit starting at time t (clock phase 1)

(27.1)

(27.2)

At time (clock phase 2)

(27.3)

(27.4)

At time (clock phase 1)

(27.5)

(27.6)

Another equation is required to be able to compute the transfer function. This
equation comes from the charge conservation. In clock phase 1, , the charge
of the two capacitors can not disappear since the charge can not be discharged
through the opamp input terminals. This means that the charge on the capaci-
tors at the end of clock phase 2, , is equal to the charge of the capacitors dur-
ing the whole clock phase 1, .

(27.7)

The charge of at the time is equal to the charge of at time since no
charge can be given by the opamp input.

(27.8)

Inserting the above equations into Eq. (27.7) gives

(27.9)

and

(27.10)

To compute the transfer function we have to take the Z-transform of both sides.

Figure 56: The SC circuit in both clock phases.o
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t τ+

q1 t τ+( ) 0 0–( )C1=

q2 t τ+( ) V 2 t τ+( ) 0–( )C2=

t 2τ+

q1 t 2τ+( ) V 1 t 2τ+( ) 0–( )C1=

q2 t 2τ+( ) V 2 t 2τ+( ) 0–( )C2=

t 2τ+

t τ+
t 2τ+

q1 t τ+( ) q2 t τ+( )+ q1 t 2τ+( ) q2 t 2τ+( )+=

C2 t C2 t τ+

q2 t( ) q2 t τ+( )=

V 2 t τ+( )C2 V 2 t 2τ+( )C2 V 1 t 2τ+( )C1+=

V 2 t( ) V 2 t τ+( )=
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(27.11)

Solving for  gives

(27.12)

This is an inverting discrete-time accumulator (compare continuous-time integra-
tor) with no delay.

b) Each switch and capacitor has parasitic capacitances connected to ground. In
Figure 57 the parasitics are shown.

is connected between the ideal input and ground and will not change the trans-
fer function.

is connected between ground and ground and thereby not change the transfer
function.

is connected between the ideal input and ground or shorted to ground. No effect
on the transfer function.

 Connected to ground. No effect on the transfer function.

is connected between ground and virtual ground thereby not changing the
transfer function.

is connected to the ideal operational amplifier and ground not changing the
transfer function.

is either connected to the virtual ground, ground or ground and ground. Hence,
the transfer function of the circuit is not changed.

The transfer function is not sensitive to parasitics.

V 2 z( )C2 V 2 z( )zC2 V 1 z( )zC1+=

V 2 z( ) V 1 z( )⁄

V 2 z( )
V 1 z( )
--------------

C1

C2
------–

z
z 1–
-----------

C1

C2
------–

1

1 z
1–

–
----------------= =

Figure 57: An inverting accumulator with parasitics.
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28. Switched capacitor circuit.

a) Here we use the charge analysis. The SC circuit is shown for both clock phases
in Figure 58.

Using the charge analysis in the circuit starting at time t (clock phase 1)

(28.1)

(28.2)

(28.3)

At time (clock phase 2)

(28.4)

(28.5)

(28.6)

At time (clock phase 1)

(28.7)

(28.8)

(28.9)

Other equations are required to be able to compute the transfer function. These
equations come from the charge conservation. In clock phase 2 the charge of the
three capacitors can not disappear since the charge can not be discharged
through the opamp input terminals. This means that the charge on the capaci-
tors at the end of clock phase 1 is equal to the charge of the capacitors during the
whole clock phase 2.

(28.10)

The charge of and at the time are equal to the charge of and
at time  since no charge can be given by the opamp input.

(28.11)

Inserting the above equations into Eq. (28.10) gives

(28.12)

Inserting equation Eq. (28.11) into Eq. (28.12) gives

Figure 58: The SC circuit in both clock phases.
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q3 t( ) 0 V 1 t( )–( )C3=

t τ+

q1 t τ+( ) V 1 t τ+( ) 0–( )C1=

q2 t τ+( ) V 2 t τ+( ) 0–( )C2=

q3 t τ+( ) 0 0–( )C3=

t 2τ+

q1 t 2τ+( ) V 1 t 2τ+( ) 0–( )C1=

q2 t 2τ+( ) V 2 t 2τ+( ) 0–( )C2=

q3 t 2τ+( ) 0 V– 1 t 2τ+( )( )C3=

q1 t( ) q2 t( ) q3 t( )+ + q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ +=

C1 C2 t τ+ C1 C2
t 2τ+

q1 t τ+( ) q+ 2 t τ+( ) q1 t 2τ+( ) q+ 2 t 2τ+( )=

V 1 t( )C1 V 2 t( )C2 V 1– t( )C3+ V 1 t τ+( )C1 V 2 t τ+( )C2+=
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(28.13)

To compute the transfer function we make a Z-transformation of both sides.

(28.14)

Solving for  gives

(28.15)

This is a bilinear inverting discrete-time accumulator (compare continuous-time in-
tegrator).

b) Each switch and capacitor has parasitic capacitances connected to ground. In
Figure 59 the parasitics are shown.

is connected between the ideal input and ground and will not change the trans-
fer function.

is connected between ground and ground and thereby not change the transfer
function.

The parasitic capacitor is in parallel with and thereby it will change the
transfer function according to

is connected between ground and virtual ground thereby not changing the
transfer function.

is connected to the ideal operational amplifier and ground not changing the
transfer function.

The transfer function is sensitive to parasitics.

V 1 t( )C1 V 2 t( )C2 V 1– t( )C3+ V 1 t 2τ+( )C1 V 2 t 2τ+( )C2+=

V 1 z( ) C1 C3– zC1–( ) V 2 z( ) zC2 C2–( )=

V 2 z( ) V 1 z( )⁄

V 2 z( )
V 1 z( )
--------------

C1 C3– zC1–

zC2 C2–
-----------------------------------

C1

C2
------1 z+

z 1–
-----------–

C1

C2
------1 z

1–
+

1 z
1–

–
----------------–= = =

Figure 59: A bilinear inverting accumulator with parasitics.

C2

C3

V1 V2

Cpa

Cpb

Cpc

Cpd

Cpe

C1

C pa

C pb

C pc C3

V 2 z( )
V 1 z( )
--------------

C1 C3– C pc zC1––

zC2 C2–
------------------------------------------------

C1

C2
------1 z+

z 1–
-----------–

C pc

C2
--------- 1

z 1–
-----------–

C1

C2
------1 z

1–
+

1 z
1–

–
----------------–

C pc

C2
--------- z

1–

1 z
1–

–
----------------–= = =

C pd

C pe
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29. Switched capacitor circuit.

a) The the two different clock phases of the circuit is shown Figure 60.

Starting in the clock phase 1 at time t:

(29.1)

(29.2)

At time

(29.3)

(29.4)

At time

(29.5)

(29.6)

The last equation comes from the charge conservation. The charge at the end of
clock phase t is equal to the charge during clock phase since no charge can
vanish into the operational amplifier.

(29.7)

Inserting the above equations into Eq. (29.7) gives.

(29.8)

performing z-transformation on both sides gives

(29.9)

which gives the following transfer function

(29.10)

The factor is just a time delay from the input to the output, it means that
when the input is sampled at time t, the output will not be available until the
time .

b) There will be parasitic capacitances at both sides of each switch and the input
and output of the operational amplifier as shown in Figure 61.

is connected between the ideal input and ground. Not changing the transfer
function

1

2

C2

C1

2C2

C1

Figure 60: The circuit in the two different clock phases.

clock phase 1 clock phase 2

q1 t( ) V 1 t( ) 0–( )C1=

q2 t( ) V 1 t( ) 0–( )C2=

t τ+

q1 t τ+( ) V 2 t τ+( )C1=

q2 t τ+( ) 0=

t 2τ+

q2 t 2τ+( ) V 1 t 2τ+( ) 0–( )C1=

q2 t 2τ+( ) V 1 t 2τ+( ) 0–( )C2=

t τ+

q1 t( ) q2 t( )+ q1 t τ+( ) q2 t τ+( )+=

V 1 t( )C1 V 1 t( )C2+ V 2 t τ+( )C1 0+=

V 1 z( ) C1 C2+( ) z
1 2⁄

V 2 z( )C1=

V 2 z( )
V z z( )
-------------- z

1 2⁄– C1 C2+

C1
------------------- z

1 2⁄– 1
C2

C1
------+ 

 = =

z
1 2⁄–

t τ+

C pa
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 is always connected to ground. Will not change the transfer function.

is connected between the ideal input and ground or between ground and
ground and thereby not interacting with the transfer function.

is connected between ideal input and ground or the ideal output of the opamp
and ground and thereby no change in the transfer function will appear.

is connected between the virtual ground and ground not causing any change in
the transfer function.

is connected between the ideal output of the opamp and ground and thereby not
changing the transfer function.

Hence, the circuit is insensitive of capacitive parasitics with respect to the transfer
function.

c) To handle the offset voltage it is assumed to be a function of time with the prop-
erties,  and the Z-transform of  equals .

At time , , and so on, the potential at the negative input of the opera-
tional amplifier, , will be equal to

. (29.11)

At time , , and so on, the potential at the negative input of the op-
erational amplifier will be equal to

. (29.12)

Using charge analysis gives:

(29.13)

(29.14)

1

2
C2

C1

rout

Cpa

Cpb

Cpc

Cpd

Cpe

Cp

Figure 61: The SC-circuit with all parasitic capacitances.

C pb

C pc

C pd

C pe

C pf

V os t n τ⋅+( ) V os t( ) n∀= V os t( ) V os z( )
t t 2τ+ t 4τ+

V x

V x t nτ+( ) A
1 A+
-------------V os t( )=

t τ+ t 3τ+ t 5τ+

V x t n 1+( )τ+( ) V os t( )
V 2 t n 1+( )τ+( )

A
----------------------------------------–=

q1 t( ) V 1 t( ) A
1 A+
-------------V os t( )– 

  C1=

q2 t( ) V 1 t( ) A
1 A+
-------------V os t( )– 

  C2=

q1 t τ+( ) V 2 t τ+( ) V x t τ+( )–( )C1= =
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(29.15)

(29.16)

(29.17)

(29.18)

The charge conservation gives

(29.19)

Some manipulation gives

(29.20)

We can from this equation see that A goes to infinity we will return to the same
answer as in a). Further, the circuit is insensitive to offset in the operational am-
plifier and we can get a design specification of the DC gain of operational ampli-
fier to meet a certain specification of the whole system.

30. Switched capacitor circuit.

The circuit is shown in Figure 62.

is the input voltage of the amplifier. The transfer function can be derived by
using charge analysis.

t:

V 2 t τ+( ) 1 1
A
---+ 

  V os t( )– 
  C1=

q2 t τ+( ) V x t τ+( )C2– V 2 t τ+( ) 1
A
--- V os t( )– 

  C2= =

q1 t 2τ+( ) V 1 t 2τ+( ) A
1 A+
-------------V os t( )– 

  C1=

q2 t 2τ+( ) V 1 t 2τ+( ) A
1 A+
-------------V os t( )– 

  C2=

q1 t( ) q2 t( )+ q1 t τ+( ) q2 t τ+( )+=

V 2 z( ) z
1 2⁄– 1

1 1
A
---+ 

  C1

C2

A
------+

--------------------------------------- C1 C2+( ) V 1 z( ) 1
1 A+
-------------V os z( )+ 

 =

z
1 2⁄– 1

C2

C1
------+ 

  1

1
1
A
--- 1

C2

C1
------+ 

 +

----------------------------------- V 1 z( ) 1
1 A+
-------------V os z( )+ 

 =

1
2

C1

C2

C3

Cpa

Cpb

Cpd

Cpe

Cpc

Figure 62: The SC circuit with parasitic capacitances

V n
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(30.1)

(30.2)

(30.3)

t+ :

(30.4)

(30.5)

(30.6)

t+ :

(30.7)

(30.8)

(30.9)

Charge redistribution

(30.10)

(30.11)

We also know that where and is the positive and negative
input node of the OTA respectively. An offset voltage of the OTA is modelled by a
voltage source at the positive input. Solve for .

, where (30.12)

Eq. (30.10) gives that

(30.13)

Solving this equation gives

(30.14)

Inserting all necessary equations in Eq. (30.11) gives the following transfer func-
tion:

(30.15)

b) Yes it is insensitive to parasitics.

Parasitics:

 is connected to an ideal voltage source is will not affect the transfer function.

q1 t( ) C1 V 1 t( ) V n t( )–( )=

q2 t( ) C2 V 2 t( ) V n t( )–( )=

q3 t( ) C3 V n– t( )( )=

τ

q1 t τ+( ) C1V 2 t τ+( )=

q2 t τ+( ) q2 t( )=

q3 t τ+( ) C3 V 2 t τ+( ) V n t τ+( )–( )=

2τ

q1 t 2τ+( ) C1 V 1 t 2τ+( ) V n t 2τ+( )–( )=

q2 t 2τ+( ) C2 V 2 t 2τ+( ) V n t 2τ+( )–( )=

q3 t 2τ+( ) C3V n t 2τ+( )–=

q2 t( ) q3 t( )+ q2 t τ+( ) q3 t τ+( )+=

q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ + =

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ +

V 2 A V p V n–( )= V p V n

V n

V n t( )
V 2

A
------– V os t( )+= V os t n τ⋅+( ) V os t( ) n∀=

C3V n t( )– C3 V 2 t τ+( ) V n t τ+( )–( )=

V 2 t τ+( )
V 2 t( )
A 1+( )

------------------=

V 2 z( )
C1

C2
1
A
--- C1 C2 C3+ +( )+

-------------------------------------------------------
zV 1 z( ) V os z( )–( )

z 1–

C1

A 1+
-------------

C2 A 1+( ) C1 C3+ +
---------------------------------------------------+

---------------------------------------------------------------------–=

C pa
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is connected between ground and virtual ground or ground and ground so it
will not affect the transfer function.

is connected between ground and virtual ground so it will not affect the
transfer function

is either connected to the output of the OTA or it will not be connected so it
will not affect the transfer function.

is connected to the output of the OTA and thereby not change the transfer
function.

31. Switched capacitor circuit.

a) See solution e)

b) Yes it is insensitive to parasitics. All parasitics are shown in Figure 63.

Parasitics:

 are connected to an ideal voltage source is will not be affected.

 are connected between ground and virtual ground so it will not be affected.

 are connected to the output of the ideal OTA, so it will not be affected.

are either connected to the output of the OTA or a node which has a constant
voltage. Hence, it will not affect the transfer function.

C pb

C pc

C pd

C pe

C pa

C pb

C pc

C pd

1

C1

C2
C3

A s 2

os

Cpb

Cpa

Cpc

Cpd

Figure 63: The SC circuit with parasitics.

Vn
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c) The output from the SC-circuit is shown in Figure 64. Every other output

(T/2) the output voltage will be .

d) The circuit is insensitive to parasitics so the transfer function will not change.
The speed of the circuit will decrease since a larger load is applied to the output of
the amplifier.

e) Assume that at time t the circuit is in the state as shown in Figure 65.

During time t, t+2 , t+4  and so on, vi see that

(31.1)

(31.2)

Eq. (31.1) gives

(31.3)

Eq. (31.2) gives

(31.4)

Use charge redistribution analysis

During time :

(31.5)

(31.6)

os
t

T 2T 3T 4T T

2

Figure 64: The output voltage as a function of the time.

V os

τ τ

V 2 t 2nτ+( ) V os t( ) V n t 2nτ+( )–( )A=

V 2 t 2n 1+( )τ+( ) V os t( ) V 2 t 2n 1+( )τ+( )–( )A=

V n t 2nτ+( ) V os t( )
V 2 t 2nτ+( )

A
-----------------------------–=

V n t 2n 1+( )τ+( )
V os t( )

1 1
A
---+

---------------=

t

q1 t( ) C1 0 V os t( )
V 2 t( )

A
-------------+– 

 =

q2 t( ) C2 V 1 t( ) V os t( )
V 2 t( )

A
-------------+– 

 =
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(31.7)

During time  ( ):

(31.8)

(31.9)

(31.10)

The charge across capacitor 3 is constant from time t to t+ since it is not con-
nected anywhere.

During time  ( ):

(31.11)

(31.12)

(31.13)

Charge conservation:

Inserting the above equations in the charge conservation equation and then a Z-
transformation gives the transfer function (Z-transform of )

(31.14)

The solution for exercise a) is obtained by letting

(31.15)

q3 t( ) C3 V 2 t( ) V os t( )
V 2 t( )

A
-------------+– 

 =

t τ+ V os t τ+( ) V os t( )=

q1 t τ+( ) C1 V 1 t τ+( )
V os t( )

1 1
A
---+

---------------–
 
 
 
 

=

q2 t τ+( ) C2 V 1 t τ+( )
V os t( )

1 1
A
---+

---------------–
 
 
 
 

=

q3 t τ+( ) q3 t( )=

τ

t 2τ+ V os t 2τ+( ) V os t( )=

q1 t 2τ+( ) C1 0 V os t( )
V 2 t 2τ+( )

A
--------------------------+– 

 =

q2 t 2τ+( ) C2 V 1 t 2τ+( ) V os t( )
V 2 t 2τ+( )

A
--------------------------+– 

 =

q3 t 2τ+( ) C3 V 2 t 2τ+( ) V os t( )
V 2 t 2τ+( )

A
--------------------------+– 

 =

q1 t τ+( ) q2 t τ+( ) q3 t τ+( )+ + q1 t 2τ+( ) q2 t 2τ+( ) q3 t 2τ+( )+ +=

V os t( ) V os z( )=

V 2 z( ) 1

C3 1 1
A
---+ 

  C1 C2+

A
-------------------+

---------------------------------------------------- ⋅=

C1 C2+( )z

1
2
---

C2z–
 
 
 

V 1 z( ) V os z( )
C1 C2+

1 A+
-------------------+

z
C3 1 1

A
---+ 

 

C3 1 1
A
---+ 

  C1 C2+

A
-------------------+

----------------------------------------------------–

------------------------------------------------------------------------------------------------------------⋅

A ∞→

V 2 z( ) 1
C3
------

C1 C2+( )z

1
2
---

C2z–

z 1–
---------------------------------------------V 1 z( )=
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32. Switched capacitor circuit.

a) The SC circuit in the different clock phases are shown in Figure 66. We do a

charge redistribution analysis. First we state the initial conditions of the circuit.

Phase 1 at time

1

C1

C2
C3

A s 2

os

Figure 65: The switched capacitor circuit.

+

–
C1

C2Vin

Vout

φ1

φ2 φ2

φ1

φ2KC2

KC1

φ1

+

–

+

–

C1

C2Vin

Vout

φ1

φ2 φ2

φ1

φ2KC2

KC1

φ1

C1

C2Vin

Vout

φ1

φ2 φ2

φ1

φ2KC2

KC1

φ1

Phase 1 at time t Phase 2 at time t + T/2

Phase 1 at time t + T

+

–
C1

C2Vin

Vout

φ1

φ2 φ2

φ1

φ2KC2

KC1

φ1

Phase 2 at time t + 3T/2

Figure 66: Switched capacitor circuit in different phases

t
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; (32.1)

(32.2)

(32.3)

(32.4)

Phase 2 at time

(32.5)

(32.6)

; (32.7)

(32.8)

The charge on the negative input node of the OP ( ) is distributed
between all four capacitances, i.e,

(32.9)

Phase 1 at time

; ; (32.10)

; (32.11)

and we get a charge conservation because no charge can leave the negative input
node of the OP.

(32.12)

Phase 2 at time

;

(32.13)

;

(32.14)

The charge on the negative input node of the OP is distributed between all four
capacitances, i.e,

(32.15)

By combining Eq. (32.12) with Eq. (32.15) we get

(32.16)

which is equal to

(32.17)

by using the z-transform we finally get the transfer function

q1 t( ) vout t( ) C1⋅=

q2 t( ) 0=

q2K t( ) 0=

q1K t( ) vin t( ) K C⋅ 1⋅=

t T 2⁄+

q1 t T 2⁄+( ) vout t T 2⁄+( ) C1⋅=

q2 t T 2⁄+( ) vout t T 2⁄+( ) C2⋅=

q2K t T 2⁄+( ) vin t T 2⁄+( ) K C2⋅ ⋅=

q1K t T 2⁄+( ) vin t T 2⁄+( ) K C1⋅ ⋅=

q1 t( ) q1K t( )+

q1 t( ) q1K t( )+ q1 t T 2⁄+( ) q2 t T 2⁄+( ) ...+ +=

                           ... q1K t T 2⁄+( ) q2K t T 2⁄+( )+ +

t T+

q1 t T+( ) vout t T+( ) C1⋅= q2 t T+( ) 0=

q1K t T+( ) vin t T+( ) C1 K⋅⋅= q2K t T+( ) 0=

q1 t T+( ) q1K t T+( )+ q1 t T 2⁄+( ) q1K t T 2⁄+( )+=

t 3T 2⁄+

q1 t 3T 2⁄+( ) vout t 3T 2⁄+( ) C1⋅=

q2 t 3T 2⁄+( ) vout t 3T 2⁄+( ) C2⋅=

q2K t 3T 2⁄+( ) vin t 3T 2⁄+( ) K C2⋅ ⋅=

q1K t 3T 2⁄+( ) vin t 3T 2⁄+( ) K C1⋅ ⋅=

q1 t T+( ) q1K t T+( )+ q1 t 3T 2⁄+( ) q2 t 3T 2⁄+( ) ...+ +=

             ... q1K t 3T 2⁄+( ) q2K t 3T 2⁄+( )+ +

q1 t T 2⁄+( ) q1K t T 2⁄+( )+ q1 t 3T 2⁄+( ) q2 t 3T 2⁄+( ) ...+ +=

             ... q1K t 3T 2⁄+( ) q2K t 3T 2⁄+( )+ +

vout t T 2⁄+( ) C1⋅ vin t T 2⁄+( ) C1 K⋅⋅+ vout t 3T 2⁄+( ) C1 +⋅=

vout t 3T 2⁄+( ) C2 vin t T 2⁄+( ) C2 K vin t T 2⁄+( ) C1 K⋅⋅+⋅⋅+⋅( )
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(32.18)

, i.e., an inverting amplifier.

b) To see if the circuit is sensitive to parasitics we examine all the parasitic capaci-
tances and check whether they can destroy the operation.

... will not affect the transfer function because it is always connected to the in-
put node.

... is shorted between ground a virtual ground.

... will not affect the transfer function because it is always connected to the out-
put node.

... is either shorted or connected to the output node and will never contribute to
the output.

... is either shorted to ground or virtual ground.

... is either shorted or connected to the input node and will never contribute to
the output.

, i.e., the circuit is insensitive to parasitics.

c) If the switch transistors would have a non-negligible on-resistance the charging/
discharging through them would not be instantaneously. This affects the speed of
the circuit and not the transfer function. To compensate for this problem one have
to make sure that we are using non-overlapping switching signals and that they are
slow enough so that the circuit has time to settle properly.

V out z( )
V in z( )
------------------

K z C2 C1+( ) C1–( )
z C2 C1+( ) C1–( )–

-------------------------------------------------- K–= =

+

–

C1

C2

Vin

Vout

φ1

φ2 φ2

φ1
φ2KC2

KC1

φ1

Cp1 Cp2
Cp3

Cp4Cp5

Cp6

C p1

C p2

C p3

C p4

C p5

C p6
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