

Lecture 7, Timing, clocking

Differential signaling schemes Timing and clocking

What did we do last time?

Filters

Choose second-order links and cascade them

Select filter components using software

Requirements on unity-gain frequency and slew rate

Supply filters

-02-18. ANTIK 0029

Decoupling capacitors (revisited today and in lab)

233 of 272

What will we do today?

Supply filters

Recapturing the decoupling capacitor

Signal distribution

Differential signalling

Signalling formats

Timing and clocking

Skew and clock tree structures

A first glance at the PLL and clocking scenarios between chips

LIU EXPANDING REALITY

Analog circuits, second course (ANDA)

The power net impedance

Remember the situtation with the inductance of supply wire

Regulator		Chip
	GROUND	

Current spike through inductor causes voltage drop

Current spike generated due to switching of capacitor in load

Analog circuits, second course

Voltage generated by regulator/battery/voltage source

LIU EXPANDING REALITY

The power net impedance, cont'd

Investigating the supply in the supply node (at the receiver chip)

Regulator bandwidth Ground plane (mainly capacitive) Supply wire (mainly inductive)

Decoupling capacitors to further reduce impedance

LIU EXPANDING REALITY

2013-02-18::ANTIK_0029 (P5A)

Analog circuits, second course (ANDA

The impedance diagram

Stephnes UNIL

LERSITET

Ground planes, towards differential signals

Minimizes the need for well-defined common reference

For example the ground

Improves the signal-to-noise ratio (by some 3 dB)

Single-ended signal power:
$$P_{s,s} = \frac{V_s^2}{2}$$
 and noise power: $P_{n,s} = V_n^2$
Differential signal power: $P_{s,d} = \frac{(V_s - (-V_s))^2}{2} = 2 \cdot V_s^2 = 4 \cdot P_{s,s}$ and noise power $P_{n,d} = (V_{np} + V_{nn})^2 = V_{np}^2 + V_{nn}^2 = 2 \cdot P_{n,s}$

Differential signals

Differential signals

$$\Delta V = V_p - V_n$$

Common-mode signal

$$\nabla V = \frac{V_p + V_n}{2}$$

Common-mode supression

The matrix

2013-02-18::ANTIK_0029 (P5A)

LIU EXPANDING REALITY

Analog circuits, second course (ANDA

Differential signals, the matrix compiled

THE OBANGS UNIVERSITE

Compile the transfer functions into a handy matrix

$$\begin{bmatrix} \Delta V_{out} \\ \nabla V_{out} \end{bmatrix} = \begin{bmatrix} A_{df} & A_{df,cm} \\ A_{cm,df} & A_{cm} \end{bmatrix} \begin{bmatrix} \Delta V_{in} \\ \nabla V_{in} \end{bmatrix}$$

Common-mode rejection ratio

$$\text{CMRR} = \frac{A_{df}}{A_{cm}}$$

Design targets

Maximize the differential gain, Minimize the common-mode gain

LIU EXPANDING REALITY

2013-02-18::ANTIK_0029 (P5A)

Analog circuits, second course (ANDA)

Differential signals, two CS stages

Common-mode range (CMR)

Common-mode levels for which the transistors operate in saturation

What about rejection?

If there is no rejection, the voltage headroom might be severely affected.

Without rejection, no real use (except for the slight gain in SNR) Effectively there is no rejection in this configuration! Some kind of "glue" is neeed.

LIU EXPANDING REALITY

Analog circuits, second course (ANDA)

Differential signals, cont'd

Two common-source stages in parallel

$$\text{CMRR} = \frac{A_{df}}{A_{cm}}$$

The differential pair

Tail source

 $CMRR = \infty$

2013-02-18::ANTIK_0029 (P5A)

Analog circuits, second course (ANDA)

242 of 272

Differential signals, differential pair

Improved (infinite) CMRR to cost of CMR

$$\Delta I = 4 \alpha \cdot V_{eff} \cdot \Delta V$$
 and $\nabla I = I_0/2$ (!)

Further on

$$I_0 = 2 \alpha \cdot \left(V_{eff}^2 + \Delta V^2 \right)$$

combines into

$$\Delta I = 4 \alpha \cdot \Delta V \cdot \sqrt{\frac{I_0}{2\alpha}} - \Delta V^2 \quad (!)$$
$$\frac{d\Delta I}{d\Delta V} = 4 \alpha \cdot \sqrt{\frac{I_0}{2\alpha}} = 4 \alpha V_{eff} = \frac{2I_0}{V_{eff}} \text{ and } \frac{d\nabla I}{d\nabla V} = 0$$

 $V_{in,n}$ M_1 M_2 $V_{in,p}$ $V_{b,5}$ M_5

2013-02-18::ANTIK_0029 (P5A)

Analog circuits, second course (ANDA)

243 of 272

Clock distribution, brute-force

Assuming low-impedance driver $(Z_{out} \approx 0)$

Locate recipients close to eachother

Wave absorbed by the termination at receiver

Drivers cannot drive too many loads

Put drivers in parallel

-02-18::ANTIK_0029

LIU EXPANDING REALITY

Clock distribution, clock tree

Assuming low-impedance driver $(Z_{out} \approx 0)$

Minimizes skew (if properly matched)

Intermediate points can be "brute-force"

Tapering factor is lower and less strict requirements on drivers

Clock distribution, lines

Assuming low-impedance driver $(Z_{out} \approx 0)$

Reflected wave at each chip: $-C_g Z_0/2$ and given

by the slope of the pulse, c.f., $i \sim C_g \cdot dV/dt$

This implies

Reduce the rise/fall times

Minimize the capacitance at each node

```
Reduce the Z_0, Z_T.
```

18''ANTIK_0029

Clock distribution, source termination

Assuming "high"-impedance driver, $(Z_{out} > 0)$

Driving N loads without far-end (resistive) termination.

Rout

Important (c.f. the lab)

Equal delay required

Equal load required

Choose $R_T = Z_0 - R_{out} \cdot N$

Maximum R_{out} cannot be too large!

 R_T

 R_{T}

LIC LAFANDING REALITY

2013-02-18::ANTIK_0029 (P5A)

Analog circuits, second course (ANDA

Delay adjustments

Why?

Due to skew and matching (!) we need to guarantee equal length and equal delay

Examples of solutions

Increase length of wires

Introduce extra RC delay

Active tuning of delay

PLL/DLL

-02-18::ANTIK_0029

248 of 272

Oscillators

-18…ANTIK_0029

LIU EXPANDING REALITY

249 of 27

Voltage controlled oscillators (VCO)

Frequency controlled by an externally applied voltage. Continuous-operation over a certain range.

Fixed-frequency oscillators (crystal)

The frequency is tuned to a fixed value (within tolerances).

Digitally controlled oscillators (NCO)

Frequency controlled by an externally applied control word. Output frequency is given by multiples of a fixed frequency (quantized).

Analog circuits, second course

Oscillators, stability

Different types of sources might influence the frequency

Temperature and voltage dependency

Supply noise and step functions on references

Results in (for example)

Jitter

Drift

-02-18…ANTIK_0029

A shift in nominal frequency

LIU EXPANDING REALITY

Signalling

A set of different signalling standards between chips

CMOS, TTL, ECL, CML, LVDS

Can be in different flavours

Swings, supply levels, current levels, etc.

Can have additional twists

Coding schemes

Some single-ended formats have differential modes.

CMOS (Complementary MOS)

Single-ended, CMOS

Voltage-driven

Maximum speed (on board) \sim 500 MHz

Toggles from supply to ground.

"Simple"

02-18::ANTIK_0029 (P5A

Power consumption is increasing with frequency and has a high impact on the chip IO ring (large switches and high dl/dt)

Analog circuits, second course

Infinite input impedance

Low output impedance

LIU EXPANDING REALITY

TTL (Transistor-transistor logic)

Single-ended, bipolar

Current-driven. "Current-sink logic", i.e., current pulls down. No current implies that receiver pulls-up "by itself".

Maximum speed (on board) ~ 200 MHz

Toggles from supply to ground.

"Simple"

Power consumption high

Low input impedance

High output impedance (for high state). Low impedance for low state.

ECL (Emitter-coupled logic)

Single-ended, bipolar

Current-driven. "Current-sink logic", i.e., current pulls down. No current implies that receiver pulls-up "by itself".

Maximum speed (on board) ~ 1 GHz

Limited swing (negative levels and second termination rail).

"Simple/complex"

Power consumption high in quiescent operation

High input impedance

Low output impedance

-18::ANTIK_0029 (P5)

255 of 272

CML (Current-mode logic)

Differential, bipolar, CMOS

Current-driven, AC coupled

Maximum speed (on board) \sim 10 GHz

Limited swing: 800 mV terminated to VDD.

Complex.

)2-18::ANTIK_0029 (P5A

Power consumption is increasing with frequency and has a high impact on the chip IO ring (large switches and high dl/dt)

Infinite input impedance

Low output impedance

LVDS (Low-voltage differential signalling)

Differential, CMOS

Current-driven. Max current of 3.5 mA.

Maximum speed (on board) 2.5 GHz

Limited swing: 350 mV around a center point ~1.25 V

Complex

Comparatively low power for the speed.

Infinite input impedance

100-Ohm output impedance (100 x 3.5 m ~ 350 mV)

Analog circuits, second course (ANDA

LIU EXPANDING REALITY

What did we do today?

Quick recapture on decoupling capacitors

Impedance of the supply net

Signal and clock distribution

Three different ways

Use differential signals!

Balance the paths

Oscillators

PLL next time.

-02-18::ANTIK_0029 (P5A

What will we do next time?

Miscellaneous blocks

PLL and DLL

Regulators

2013-02-18::ANTIK 0029 (P5A)

Analog circuits, second course (ANDA)

LIU EXPANDING REALITY 260 of 272