## Lecture 7, Timing, clocking

Differential signaling schemes
Timing and clocking


## What did we do last time?

## Filters

Choose second-order links and cascade them
Select filter components using software

Requirements on unity-gain frequency and slew rate

## Supply filters

Decoupling capacitors (revisited today and in lab)

## What will we do today?

## Supply filters

Recapturing the decoupling capacitor

## Signal distribution

Differential signalling
Signalling formats

## Timing and clocking

Skew and clock tree structures
A first glance at the PLL and clocking scenarios between chips

## The power net impedance

## Remember the situtation with the inductance of supply wire



Current spike through inductor causes voltage drop
Current spike generated due to switching of capacitor in load
Voltage generated by regulator/battery/voltage source

## The power net impedance, cont'd



Investigating the supply in the supply node (at the receiver chip)
Regulator bandwidth
Ground plane (mainly capacitive)
Supply wire (mainly inductive)
Decoupling capacitors to further reduce impedance

## The impedance diagram



## Ground planes, towards differential signals

Minimizes the need for well-defined common reference
For example the ground
Improves the signal-to-noise ratio (by some $\mathbf{3 d B}$ )
Single-ended signal power: $P_{s, s}=\frac{V_{s}^{2}}{2}$ and noise power: $P_{n, s}=V_{n}^{2}$
Differential signal power: $P_{s, d}=\frac{\left(V_{s}-\left(-V_{s}\right)\right)^{2}}{2}=2 \cdot V_{s}^{2}=4 \cdot P_{s, s}$ and noise power $P_{n, d}=\left(V_{n p}+V_{n n}\right)^{2}=V_{n p}^{2}+V_{n n}^{2}=2 \cdot P_{n, s}$

## Differential signals



## Differential signals

$$
\Delta V=V_{p}-V_{n}
$$

Common-mode signal

$$
\nabla V=\frac{V_{p}+V_{n}}{2}
$$

Common-mode supression
The matrix


## Differential signals, the matrix compiled

Compile the transfer functions into a handy matrix

$$
\left.\left.\left[\begin{array}{c}
\Delta V_{\text {out }} \\
\nabla V_{\text {out }}
\end{array}\right]=\left|\begin{array}{cc}
A_{d f} & A_{d f, c m} \\
A_{c m, d f} & A_{c m}
\end{array}\right| \right\rvert\, \begin{array}{c}
\Delta V_{\text {in }} \\
\nabla V_{\text {in }}
\end{array}\right]
$$

Common-mode rejection ratio

$$
\mathrm{CMRR}=\frac{A_{d f}}{A_{c m}}
$$

Design targets
Maximize the differential gain, Minimize the common-mode gain

## Differential signals, two CS stages

## Common-mode range (CMR)

Common-mode levels for which the transistors operate in saturation

## What about rejection?

If there is no rejection, the voltage headroom might be severely
 affected.

Without rejection, no real use (except for the slight gain in SNR) Effectively there is no rejection in this configuration! Some kind of "glue" is neeed.

## Differential signals, cont'd

Two common-source stages in parallel
$\mathrm{CMRR}=\frac{A_{d f}}{A_{c m}}$
The differential pair
Tail source
$C M R R=\infty$


## Differential signals, differential pair

Improved (infinite) CMRR to cost of CMR

$$
\Delta I=4 \alpha \cdot V_{e f f} \cdot \Delta V \text { and } \nabla I=I_{0} / 2
$$

Further on

$$
I_{0}=2 \alpha \cdot\left(V_{e f f}^{2}+\Delta V^{2}\right)
$$

combines into

$$
\begin{aligned}
& \Delta I=4 \alpha \cdot \Delta V \cdot \sqrt{\frac{I_{0}}{2 \alpha}-\Delta V^{2}}(!) \\
& \frac{d \Delta I}{d \Delta V}=4 \alpha \cdot \sqrt{\frac{I_{0}}{2 \alpha}}=4 \alpha V_{e f f}=\frac{2 I_{0}}{V_{e f f}} \text { and } \frac{d \nabla I}{d \nabla V}=0
\end{aligned}
$$



## Clock distribution, brute-force

Assuming low-impedance driver $\left(Z_{\text {out }} \approx 0\right)$
Locate recipients close to eachother

Wave absorbed by the termination at receiver

Drivers cannot drive too many loads

Put drivers in parallel


## Clock distribution, clock tree

Assuming low-impedance driver $\left(Z_{\text {out }} \approx 0\right)$
Minimizes skew (if properly matched)
Intermediate points can be "brute-force"
Tapering factor is lower and less strict requirements on drivers


## Clock distribution, lines

Assuming low-impedance driver $\left(Z_{\text {out }} \approx 0\right)$
Reflected wave at each chip: $-C_{g} Z_{0} / 2$ and given
by the slope of the pulse, c.f., $i \sim C_{g} \cdot d V / d t$
This implies
Reduce the rise/fall times
Minimize the capacitance at each node
Reduce the $Z_{0}, Z_{T}$.


HUE EXPANDING REALITY

## Clock distribution, source termination

Assuming "high"-impedance driver, $\left(Z_{\text {out }}>0\right)$
Driving $N$ loads without far-end (resistive) termination.

Important (c.f. the lab)
Equal delay required
Equal load required


Choose $R_{T}=Z_{0}-R_{\text {out }} \cdot N$

Maximum $R_{\text {out }}$ cannot be too large!

## Delay adjustments

## Why?

Due to skew and matching (!) we need to guarantee equal length and equal delay

Examples of solutions


Increase length of wires
Introduce extra RC delay
Active tuning of delay
PLL/DLL

## Oscillators

## Voltage controlled oscillators (VCO)

Frequency controlled by an externally applied voltage.
Continuous-operation over a certain range.

## Fixed-frequency oscillators (crystal)

The frequency is tuned to a fixed value (within tolerances).

## Digitally controlled oscillators (NCO)

Frequency controlled by an externally applied control word. Output frequency is given by multiples of a fixed frequency (quantized).

## Oscillators, stability

## Different types of sources might influence the frequency

Temperature and voltage dependency
Supply noise and step functions on references
Results in (for example)
Jitter
Drift
A shift in nominal frequency


## Signalling

A set of different signalling standards between chips
CMOS, TTL, ECL, CML, LVDS
Can be in different flavours
Swings, supply levels, current levels, etc.
Can have additional twists
Coding schemes
Some single-ended formats have differential modes.

## CMOS (Complementary MOS)

Single-ended, CMOS
Voltage-driven
Maximum speed (on board) ~ 500 MHz
Toggles from supply to ground.
"Simple"
Power consumption is increasing with frequency and has a high impact on the chip IO ring (large switches and high dl/dt)

Infinite input impedance
Low output impedance

## TTL (Transistor-transistor logic)

Single-ended, bipolar
Current-driven. "Current-sink logic", i.e., current pulls down. No current implies that receiver pulls-up "by itself".

Maximum speed (on board) ~ 200 MHz
Toggles from supply to ground.
"Simple"
Power consumption high
Low input impedance
High output impedance (for high state). Low impedance for low state.

## ECL (Emitter-coupled logic)

Single-ended, bipolar
Current-driven. "Current-sink logic", i.e., current pulls down. No current implies that receiver pulls-up "by itself".

Maximum speed (on board) $\sim 1$ GHz
Limited swing (negative levels and second termination rail).
"Simple/complex"
Power consumption high in quiescent operation
High input impedance
Low output impedance

## CML (Current-mode logic)

Differential, bipolar, CMOS
Current-driven, AC coupled
Maximum speed (on board) ~ 10 GHz
Limited swing: 800 mV terminated to VDD.
Complex.
Power consumption is increasing with frequency and has a high impact on the chip IO ring (large switches and high dl/dt)

Infinite input impedance
Low output impedance

## LVDS (Low-voltage differential signalling)

Differential, CMOS

Current-driven. Max current of 3.5 mA .
Maximum speed (on board) 2.5 GHz
Limited swing: 350 mV around a center point $\sim 1.25 \mathrm{~V}$
Complex
Comparatively low power for the speed.
Infinite input impedance
100-Ohm output impedance ( $100 \times 3.5 \mathrm{~m} \sim 350 \mathrm{mV}$ )


## What did we do today?

## Quick recapture on decoupling capacitors

Impedance of the supply net
Signal and clock distribution
Three different ways
Use differential signals!
Balance the paths

## Oscillators

PLL next time.

## What will we do next time?

Miscellaneous blocks
PLL and DLL
Regulators

