What did we do last time?

PCB vs silicon

What are the differences when scaling up the geometries?

Transmission lines

Termination and other properties of "large" wires

What will we do today?

Filters

A quick view of filters for an analog signal chain

Supply filters

Decoupling (bypasss) capacitors and supply filters

Data converters

 (dependent on time, might be pushed out to next lecture)An overview of data converters
An understanding of the frequency domain
The oversampling data converter

Analog filters

Linear, frequency-selective filter
Different types of filters
Band-select filters (for telecom and noise reduction)
Anti-aliasing filters (for the ADC)
Reconstruction filters (for the DAC)
Notch filters
(for disturbances at specific frequencies)
Effectively realizing an LTI transfer function

$$
H(s)=H_{0} \cdot \frac{a_{N} \cdot s^{N}+\ldots+a_{1} \cdot s+a_{0}}{b_{M} \cdot s^{M}+\ldots+b_{1} \cdot s+b_{0}}
$$

Analog filters, cont'd

A general transfer function for a linear system is given by

$$
\begin{gathered}
H(s)=\frac{Y(s)}{X(s)}=\frac{a_{0}+a_{1} s+a_{2} s^{2}+\ldots}{b_{0}+b_{1} s+b_{2} s^{2}+\ldots} \\
Y(s) \cdot\left(b_{0}+b_{1} s+b_{2} s^{2}+\ldots\right)=X(s) \cdot\left(a_{0}+a_{1} s+a_{2} s^{2}+\ldots\right) \\
Y(s)=X(s) \cdot\left(\alpha_{0}+\alpha_{1} \frac{1}{s}+\alpha_{2} \frac{1}{s^{2}}+\ldots\right)-Y(s) \cdot\left(\beta_{1} \frac{1}{s}+\beta_{2} \frac{1}{s^{2}}+\ldots\right)
\end{gathered}
$$

Create a "recursive" set of integrations

$$
\left.\left.Y(s)=\alpha_{0} \cdot X(s)+\frac{1}{s} \cdot\left|\alpha_{1} X(s)-\beta_{1} \cdot Y(s)+\frac{1}{s} \cdot\right| \alpha_{2} \cdot X(s)-\beta_{2} \cdot Y(s)+\frac{1}{s} \cdot(\ldots)\right)\right)
$$

Continuous-time filters, flow graph

Manipulation

Replacing with integrators
Feedback, etc.

Cascading of several stages

Active-RC

Summation of different inputs is done with the resistors, i.e., we are summing up the currents in the virtual ground node:

$$
-V_{\text {out }}(s) \cdot s C_{L}=I_{1}(s)+I_{2}(s)+I_{3}(s)=\frac{V_{1}(s)}{R_{1}}+\frac{V_{2}(s)}{R_{2}}+\ldots
$$

Which combined gives us the integration

$$
V_{o u t}(s)=-\frac{V_{1}(s)}{s C_{L} R_{1}}-\frac{V_{2}(s)}{s C_{L} R_{2}}+\ldots
$$

Example, first-order pole with active-RC

Sum the currents in the virtual ground:

$$
V_{\text {out }}(s) \cdot s C_{2}=\frac{-V_{\text {in }}(s)}{R_{4}}-\frac{V_{\text {out }}(s)}{R_{8}}
$$

such that

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-R_{8} / R_{4}}{1+\frac{s}{1 / C_{2} R_{4}}}
$$

Example: Tow-Thomas, Biquad, and more,

Output isolated and buffered with OP
Single-pole formed with single RC at output or input

Analog filters, Architectures

Ideally

Best performance is obtained with a leapfrog or ladder filter. Less sensitive to component variations

Practically

Select a set of cascaded stages on the board instead.
Design for one extra pole whenever possible (two poles per opamp)
Quite a few software tools "out there" that provide you with the values once you know the specification.

Off-the shelf integrated analog circuits with filtering options

Analog filters, Architectures, cont'd

Comparison

Two lowpass filters with same, but different, properties.

Scaling

Scale your signal levels to maximize the input/output range.

Analog filters, opamp considerations

Speed

Unity-gain frequency of the opamp should be considerably larger than the closed-loop gain times the cut-off frequency of your filter

$$
f_{u g}>100 \cdot A_{C L} \cdot f_{b w} \text { (example) }
$$

Current drive capability

Slew rate must cope with the highest frequency of your filter:

$$
|\mathrm{SR}|>2 \pi \cdot f_{b w} \cdot V_{o u t, p p} \text { (assuming sinusoid signal) }
$$

Noise, limited gain we have discussed in previous lectures

Back to the PCB: supply filters

Receiver picks up noise on the ground (reference) wire

Noise sources

External humm and interferers
Due to shared ground paths due to inductance in path
Differential signalling solves a lot (see next lecture)

The power rules

Three rules for power supplies/grounds

1) Use low-impedance ground connections between chips (gates).
2) The impedance between power pins on any two chips (gates) should be just as low as the impedance between ground pins.
3) There must be a low-impedance path between power and ground

The power rules, cont'd

These three rules can be satisfied if:

There is a good ground plane and there are bypass capacitors close to each chip/gate/component providing the low-impedance path.

Then, the supply wiring can be "sloppy".
(However, best to use a power supply plane too).

Supply filters (bypass capacitors)

Connecting a bypass capacitor locally also reduces the effect of inductance in the supply wires.

Supply has low impedance at low frequencies (inductance)
Capacitor has low impedance at high frequencies

Example decoupling capacitor

Values

Power inductance is L_{P} and that the max power drop ΔV
Chip switches N wires, each with a load of C_{L} during a time of $t_{r f}$ Some relationships

$$
\Delta I=N \cdot C_{L} \cdot \frac{V_{d d}}{t_{r f}}, \Delta V=X_{\max } \cdot \Delta I, X_{\max }=2 \pi \cdot L_{P} \cdot f_{x}, X_{\max }=\frac{1}{2 \pi \cdot N \cdot C_{L} \cdot f_{x}}
$$

Example values

$$
V_{d d}=1 V, N=16, C_{L}=10 \mathrm{pF}, L_{P}=100 \mathrm{nH}, \Delta V=100 \mathrm{mV}, t_{r f}=100 \mathrm{ps}
$$

Example decoupling capacitor, cont'd

Combine and simplify

$$
C_{x}=\frac{1}{2 \pi \cdot f_{s w} \cdot Z_{\max }}=\frac{1}{2 \pi \cdot \frac{X_{\max }}{2 \pi L_{P}} Z_{\max }}=\frac{L_{P}}{X_{\max }{ }^{2}}=\frac{L_{P}}{\left(\left.\frac{\Delta V}{\Delta I}\right|^{2}\right.}=\frac{L_{P}}{\left\lvert\, \frac{\Delta V}{\left.N \cdot C_{L} \cdot \frac{V_{d d}}{t_{r f}}\right|^{2}}\right.}
$$

The capacitance for which the reactance of C cancels the reactance of \mathbf{L}

$$
C_{x}=\frac{\left(N \cdot C_{L} \cdot V_{d d}\right)^{2} \cdot L_{P}}{\left(\Delta V \cdot t_{r f}\right)^{2}} \text { gives } C_{x} \approx 37 \mu F
$$

Decoupling (bypass) capacitors

Parasitics

Lead/package/mounting inductance, L
Equivalent series resistance due to parasitic resistance Effective inductance

$$
Z_{C}(\omega)=\sqrt{E S R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

The L and C can give rise to resonance effects when connected in paralle!!

Decoupling (bypass) capacitors

Requirements on the reactance/impedance
0.1 to 1 Ohm

Figure showing the impedance effects

1) Wiring inductance from supply
2) Decoupling capacitors
3) Decoupling capacitive bank

4) Power and ground plane

Decoupling capacitors. Conclusions

Significant capacitance in the ground planes too, so put the ground and supply planes very close to each other!

The best way to get very low inductance is to parallel a larger set of smaller capacitors!

Laboratory 3 will guide you through this in more detail.

Data converters fundamentals

DAC
Represents a digital signal with an analog signal To control something
To transmit something (a modulated signal)

ADC

Represents an analog signal with a digital signal
To measure something
To receive something (a modulated signal)

And there are others:

Time-to-digital converters
Frequency-to-digital converters

The quantization process

Only distinct levels detected /represented
The error is the deviation from straight line
A range from 0 to $V_{r e f}$ gives the LSB step

$$
\Delta=\frac{V_{r e f}}{2^{N}}
$$

The quantization error is bounded

$$
Q \in\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right)
$$

Quantization process, cont'd

Assume signal-independent (not true for low number of bits)
Quantization assumed to be a stochastic process
White noise, uniformly distributed in $\{-\Delta / 2, \Delta / 2\}$

Noise power spectral density

Quantization process, cont'd

Sigma of the probabilistic noise

Noise model

Remember the superfunction

Power spectral density

A certain bandwidth contains a certain amount of noise

The quantization process, cont'd

Peak power assuming centered around the nominal DC level

$$
P_{p k}=\left(\frac{V_{r e f}}{2}\right)^{2}
$$

Maximum, average sinusoidal power

$$
P_{a v g}=\frac{1}{2} \cdot\left(\frac{V_{r e f}}{2}\right)^{2}=\frac{1}{8} \cdot V_{r e f}^{2}=\frac{P_{p k}}{2}
$$

Peak-to-average ratio (PAR) for a sinusoid

$$
\mathrm{PAR}=P_{p k} / P_{\text {avg }}=2(1.76 \mathrm{~dB})
$$

The quantization process, cont'd

Noise power given by the sigma: $P_{q, \text { tot }}=\sigma^{2}=\Delta^{2} / 12$
Signal-to-quantization-noise ratio: $\mathrm{SQNR}=\frac{P_{a v g}}{P_{q, t o t}}=\frac{P_{p k}}{P_{q, \text { tot }} \cdot \mathrm{PAR}}$
With values inserted

$$
\begin{aligned}
& \mathrm{SQNR}=\frac{V_{r e f}^{2} / 4}{\frac{1}{12} \cdot\left(\frac{V_{\text {ref }}}{2^{N}}\right)^{2} \cdot \mathrm{PAR}}=\frac{3 \cdot 2^{2 N}}{\mathrm{PAR}} \text { or in a logarithmic scale: } \\
& \mathrm{SQNR} \approx 6.02 \cdot N+4.77-\mathrm{PAR}=6.02 \cdot N+1.76 \text { for our sinusoid. }
\end{aligned}
$$

D/A conversion as such

Amplitude is generated by scaling the digital bits and summing them

$$
A_{\text {out }}(n T)=\sum_{k=0}^{N-1} w_{k}(n T) \cdot 2^{k}
$$

The scaling does not necessarily have to be binary:

> Binary

Thermometer
Linear
Segmented

D/A conversion, cont'd

The output is a pulse-amplitude modulated signal (PAM)

$$
\begin{aligned}
& A_{\text {out }}(t)=\sum a(n T) \cdot p(t-n T) \\
& A_{\text {OUT }}(j \omega)=A\left(e^{j \omega T}\right) \cdot P(j \omega)
\end{aligned}
$$

A common pulse is the zero-order hold, since ideal reconstruction is impossible. In the frequency domain the output will be sinc-weighted:

A reconstruction filter is needed to compensate!

D/A converter architectures

Current-steering

Outputs summed by weighted current sources.

Resistor-string

Select one tap out of many and buffer

R-2R

Utilizes current dividers

And many more

Oversampling DACs, etc.

A/D conversion

A/D conversion is essentially a sampling process

$$
a(n T)=\left.a(t)\right|_{t=n T}
$$

Poission's summation formula

$$
A\left(e^{j \omega T}\right)=\sum A(j(\omega-2 \pi k) \cdot T)
$$

Spectrum might repeat and overlap itself!

A/D conversion, cont'd

To avoid folding:
meet the sampling theorem (theoretically minimizes error)
use an anti-aliasing filter (practically minimizes error)
Practically, an amount of oversampling is required to meet the tough filter requirements

Analog input is mapped to a digital code
A range of the input mapped to a unique digital code

$$
D(n T)=\sum_{k=0}^{N-1} w_{k}(n T) \cdot 2^{k}
$$

A/D converter architectures

Flash

A set of comparator compares input signal with reference levels

Sub-ranging

Use a coarse stage cascaded with a fine stage.

Pipelined

A set of sub-ranging ADCs
Successive approximation
One sub-ranging ADCs looping in time rather than a straight pipeline.

Converter trade-offs, speed vs resolution

A common figure-of-merit:

$$
\mathrm{FOM}=\frac{4 k T \cdot f_{b w} \cdot \mathrm{DR}}{P}
$$

Some conclusions from this formula
High-speed converters cost power
High-resolution converters cost area

Quantization noise revisited 1

Assume signal-independent (not true for low number of bits)
Assume white noise, uniformly in $\left|-\frac{\Delta}{2}, \frac{\Delta}{2}\right|$, with $\Delta=\frac{V_{r e f}}{2^{N}}$
Noise power spectral density (PSD)

Quantization noise revisited 2 (quiz ...)

Noise power given by the sigma: $P_{q, \text { tot }}=\sigma^{2}=\Delta^{2} / 12$
Signal-to-quantization-noise ratio: $\mathrm{SQNR}=\frac{P_{a v g}}{P_{q, \text { tot }}}=\frac{P_{p k}}{P_{q, \text { tot }} \cdot \mathrm{PAR}}$
With values inserted

$$
\text { SQNR }=\frac{V_{r e f}^{2} / 4}{\frac{1}{12} \cdot\left|\frac{V_{r e f}}{2^{N}}\right|^{2} \cdot \operatorname{PAR}}=\frac{3 \cdot 2^{2 N}}{\operatorname{PAR}}
$$

In logarithmic scale

$$
\mathrm{SQNR} \approx 6.02 \cdot N+4.77-\mathrm{PAR}=6.02 \cdot N+1.76 \text { for our sinusoid. }
$$

Oversampling 1

Assume we have headroom to increase the sample frequency

Apply filtering to remove the excessive noise

We can effectively increase the performance! Or ... ?

Oversampling converters

Noise power over the entire Nyquist range

$$
\mathrm{SQNR}=6.02 \cdot N+1.76[\mathrm{~dB}]
$$

Assume we oversample, or put it this way, we have a anti-aliasing/reconstruction filter there anyway. We get

$$
\mathrm{SQNR}=6.02 \cdot N+1.76+10 \cdot \log _{10} \frac{f_{s}}{2 \cdot f_{b w}}
$$

where the oversampling ratio is $\mathrm{OSR}=\frac{f_{s}}{2 \cdot f_{b w}}$
"For each doubling of the sample frequency, we gain 3 dB "

Oversampling converters

Assume we take a lower order converter to start with

$$
\mathrm{ENOB}=\frac{\mathrm{SQNR}-1.76}{6.02}=N+\frac{10 \cdot \log _{10} \mathrm{OSR}}{6.02}
$$

A 16-bit resolution can be obtained using a 12-bit converter if we oversample 256 times.

For some applications not an impossible scenario
A 16-bit resolution can be obtained using a 1-bit converter if we oversample 1073741824 times.

1 Hz would require 1 GHz of sampling frequency!

Attacking the filtering problem

Ideal reconstruction and sampling requires ideal filters

Increase your frequency range
DAC: Interpolation and upsampling
ADC: Decimation and downsampling

Drawbacks

Higher power consumption

More difficult to design
FOM limit

Oversampling converters, cont'd

Since we are introducing another converter, and increasing the frequency - why not spice it a bit?

Create a converter that can also shape the new added noise

This can be done through sigma-delta modulation

High-pass filters the added noise
All-pass filters the signal

Designing a sigma-delta modulator is very much a filtering problem
Notice that a DAC can never increase the number of bits!

Sigma-delta converters, cont'd

Consider the transfer function

$$
Y=Q+A \cdot \underbrace{(X-B \cdot Y)}_{\epsilon} \Rightarrow Y=\frac{Q+A \cdot X}{1+A \cdot B}
$$

Noise and signal transfer functions: $\mathrm{NTF}=\frac{1}{1+A \cdot B}, \mathrm{STF}=\frac{A}{1+A \cdot B}$

Example, \mathbf{A} is integrator and \mathbf{B} is unity: $\mathrm{NTF}=1-z^{-1}, \mathrm{STF}=z^{-1}$
Order of the filters and oversampling determines the SQNR:

$$
\mathrm{SQNR}=6.02 \cdot N+1.76+10 \cdot(2 \cdot L+1) \cdot \log _{10} \mathrm{OSR}-10 \cdot \log _{10} \frac{\pi^{2 \mathrm{~L}}}{2 L+1}
$$

Sigma-delta converters, cont'd

1st-order modulator. 16-bit resolution can be obtained using:
12-bit converter if we oversample 16 times
1-bit converter if we oversample 1522 times (c.f. 1G-times before)
Second-order modulator. 16-bit resolution ...
12-bit converter if we oversample 6 times.
1-bit converter if we oversample 116 times.
Third-order modulator. 16-bit resolution ...
12-bit converter if we oversample 5 times.
1-bit converter if we oversample 40 times
Momentum slightly lost and filtering problem recreated!

Sigma-delta, the audio example

HIFI

16 bits, i.e., 100 dB
Signal bandwidth

$$
22 \text { kHz }
$$

Choose as few bits in coarse quantizer as possible

Choose minimum possible order

Choose minimum possible sample frequency
What configurations are possible?

Sigma-delta, the audio example

$$
\mathrm{SQNR}=6.02 \cdot N+1.76+10 \cdot(2 \cdot L+1) \cdot \log _{10} \mathrm{OSR}-10 \cdot \log _{10} \frac{\pi^{2 L}}{2 L+1}
$$

gives us

What did we do today?

Filters

A quick glance on analog filters leading to supply filters.

Data converter fundamentals

Quantization noise
Signal-to-noise ratio
Overview, since literature is more useful explaining many, many different architectures

DACs have no delay

What will we do next time?

Wrap-up data converters

Signal distribution

Timing and clocking

Lecture 7, Timing, clocking

Differential signaling schemes Timing and clocking

What did we do last time?

Filters

Data converter fundamentals

