Lecture 3, Opamps

Operational amplifiers, high-gain, high-speed

What did we do last time?

Multi-stage amplifiers

Increases gain
Increases number of poles
Frequency domain
Stability
Phase margin

What will we do today?

Wrap-up the discussion on compensation and stability

Two-stage amplifiers
Three compensation methods

Operational amplifiers

Characteristics
Operation

The problem: Stability, cont'd

Bode plot

What happens to the transfer characteristics?

Phase margin
Feedback factor
Step response
Settling
Oscillations

Critically damped at 70 degrees

We need to be a bit more systematic

One model (high-impedance load) and focus on two-pole

$$
p_{1}=\frac{G_{I}}{C_{I}}, p_{2}=\frac{G_{I I}}{C_{I I}}, A_{1}=\frac{g_{m I}}{G_{I}}, A_{2}=\frac{g_{m I I}}{G_{I I}}
$$

Dominant pole assumption (output)

Assuming pole splitting, $p_{2} \gg p_{1}$, gives us

$$
A(s)=\frac{A_{1} \cdot A_{2}}{\left(1+\frac{s}{p_{11}}\right) \cdot\left(1+\frac{s}{p_{12}}\right)} \approx \frac{A_{1} \cdot A_{2}}{1+\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} \cdot p_{2}}}
$$

This implies: $\omega_{u g} \approx A_{1} \cdot A_{2} \cdot p_{1}$ and

$$
\begin{gathered}
\phi_{m}=180-\arg A\left(j \omega_{u g}\right)=180-\operatorname{atan} \frac{\omega_{u g}}{p_{1}}-\operatorname{atan} \frac{\omega_{u g}}{p_{2}} \approx 90-\operatorname{atan} \frac{\omega_{u g}}{p_{2}} \\
\phi_{m} \approx 90-\operatorname{atan}\left(A_{0} \cdot \frac{p_{1}}{p_{2}}\right)
\end{gathered}
$$

The formulas (dominant load!)

Unity-gain frequency

$$
\omega_{u g} \approx \frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot G_{I I}} \cdot \frac{G_{I I}}{C_{I I}}=\frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot C_{I I}}
$$

Phase margin

$$
\phi_{m} \approx 90-\operatorname{atan} \frac{\omega_{u g}}{p_{2}}=90-\operatorname{atan} \frac{\frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot C_{I I}}}{\frac{G_{I}}{C_{I}}}=90-\operatorname{atan} \frac{g_{m I} \cdot g_{m I I} \cdot C_{I}}{G_{I}^{2} \cdot C_{I I}}
$$

etc., etc., etc. -- We need to be a bit more organized...

Compensation, poles are too close

The "cloud" could be a capacitor or series resistor-capacitor.

Poles and zeros 1

Stable?

Poles and zeros 2

Stable?

Compensation

What is the cost associated with compensation?

Compensation, two cases:

1) "Internal" node sees a low-impedance node

Typically: output load dominates, drive a capacitive load
Load-compensation, i.e., increase cap externally
2) "Internal" node sees a high-impedance node

Typically: internal load dominates, drive a resistive load
Miller-compensation, i.e., utilize the second-stage gain to multiply C_{C}
As always, some exceptions to the rule:
Nested compensation, active compensation, ... and more ...

Compensation compiled:

Compensation, Miller capacitance

Introduced zero	Parasitic pole	Dominant pole	Unity-gain
$z_{1}=\frac{g_{m I I}}{C_{C}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$

Introduced zero	Parasitic pole	Phase margin
$z_{1} \approx 10 \cdot \omega_{u g}$	$p_{2} \approx 2.2 \cdot \omega_{u g}$	≈ 60

Dominant pole moves "down", parasitic pole moves "up"
Parasitic zero added (harmful for phase margin)

Compensation, Nulling resistor 1

Introduced zero	Parasitic poles	Dominant pole Unity-gain	
$z_{1}=\frac{g_{m I I}}{C_{C}} \cdot \frac{1}{1-R_{Z} \cdot g_{m I I}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}, p_{3}=\frac{-1}{R_{Z} \cdot C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$
$R_{Z}=\frac{1}{g_{m I I}} \cdot\left(1+\frac{C_{I I}}{C_{C}}\right)$			

Introduced zero	Parasitic pole	Phase margin
$z_{1} \rightarrow p_{2}$	$p_{3} \approx 1.73 \cdot \omega_{u g}$	≈ 60

Compensation, Nulling resistor 2

Introduced zero	Parasitic poles	Dominant pole Unity-gain	
$z_{1}=\frac{g_{m I I}}{C_{C}} \cdot \frac{1}{1-R_{Z} \cdot g_{m I I}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}, p_{3}=\frac{-1}{R_{Z} \cdot C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$

$$
R_{Z}=\frac{1}{g_{m I I}}
$$

Introduced zero	Parasitic pole	Phase margin
$z_{1} \rightarrow \infty$	$p_{2} \approx 1.73 \cdot \omega_{u g}, p_{3}>10 \cdot \omega_{u g}$	≈ 60

Rule-of-thumbs for hand-calculation

Use e.g. MATLAB to support calculations for understanding

```
/site/edu/es/ANTIK/antikLab/m/antikPoleZero.m
```

/site/edu/es/ANTIK/antikLab/m/antikSettling.m

In the end, use the simulator.
It has to be robust over temperature and other variations.
Hand calculations are incorrect per definition
Model corresponds quite well with circuit once you have identified the different stages

See for example exercises

Operational amplifiers

Operational amplifiers (OP)

drive resistive loads
have zero output impedance, zero input impedance, infinite gain
act like a voltage source

Operational transconductance amplifiers (OTA)

drive capacitive loads
have infinite output impedance, zero input impedance, infinite gain
act like a current source

Why do you want controlled feedback?

Gain is now under control!

No variation with gm/gds, instead it is given by passive components
"Unlimited" drive capability

Isolation of input and output
Linearization
Remember, it is a regulation loop. It is designed to track the changes, anything added in the loop will be supressed.

Practical concerns

Limited gain

Open-loop gain vs. closed-loop gain

Bandwidth

Speed

Offset error

Mismatch will cause an offset -
 how do we handle this?

Limited gain

Ideal case:

$$
\frac{R_{1}}{R_{1}+R_{2}} \cdot v_{\text {out }}=v_{\text {in }} \Rightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{1}+R_{2}}{R_{1}}=\Gamma
$$

Non-ideal gain case:

$$
\begin{gathered}
v_{\text {out }}=A_{0} \cdot\left|v_{\text {in }}-\frac{R_{1}}{R_{1}+R_{2}} \cdot v_{\text {out }}\right| \Rightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1}{\frac{1}{A_{0}}+\frac{R_{1}}{R_{1}+R_{2}}}= \\
=\frac{R_{1}+R_{2}}{R_{1}} \cdot \frac{1}{1+\frac{R_{1}+R_{2}}{A_{0} \cdot R_{1}}}=\frac{\Gamma}{1+\frac{\Gamma}{A_{0}}}
\end{gathered}
$$

Bandwidth

Single-pole (ignore effect of impedance):

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\Gamma}{\left.\left.1+\frac{\Gamma}{A_{0}} \cdot \right\rvert\, 1+\frac{s}{p_{1}}\right)} \\
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\frac{\Gamma}{1+\Gamma / A_{0}}}{1+\frac{\Gamma / A_{0}}{1+\Gamma / A_{0}} \cdot \frac{s}{p_{1}}} \approx \frac{\Gamma}{1+\frac{s}{p_{1} \cdot A_{0} / \Gamma}}
\end{aligned}
$$

The amplifier will band-limit the system!

More detailed model

$$
\begin{aligned}
& v_{x}=\frac{R_{1}}{R_{1}+R_{2}} \cdot v_{\text {out }} \\
& g_{m}\left(v_{\text {in }}-v_{x}\right)+\left(0-v_{\text {out }}\right) Y_{\text {out }}+\frac{0-v_{\text {out }}}{R_{1}+R_{2}}=0 \\
& g_{m} v_{\text {in }}=v_{\text {out }} \cdot\left[Y_{\text {out }}+\frac{1+R_{1} g_{m}}{R_{1}+R_{2}}\right] \\
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\Gamma}{1+\frac{1}{g_{m} R_{1}}+\frac{\Gamma}{g_{m} / Y_{\text {out }}}}, \text { etc., etc. }
\end{aligned}
$$

Other practical concerns wrt. current

MGS UNS

Feedback with resistors

An OP given with a certain current drive capability will put requirements on the resistor sizes

What is the maximum swing?
What is the DC level?

Other practical concerns wrt. gain

Integrator

Effect of limited gain on integration
operation. Maximum integration is A_{0}.

Low-pass filter

Effect on the filter bandwidth
How fast?
A closed-loop gain of 10 and a bandwidth of
 25 MHz

The "741 amplifier"

Texas instruments

opa 336 - what is the bandwidth?
opa 358 - what is the DC gain?

Analog Devices

AD854x - what is the DC gain, or what is the open-loop bandwidth?

Operational amplifier architectures

Examples

Telescopic

Two-stage

Folded-cascode

Current-mirror
Essentially just cascaded stages of different kinds

Telescopic OTA

Stack many cascodes on top of each-other and use gainboosting, etc.

Omitted, since it is not applicable for modern processes.
The swing is eaten up.

Two-stage OP/OTA

Current-mirror OP/OTA

Folded-cascode OP/OTA

OP/OTA Compilation

Cookbook recipes

Hand-outs with step-by-step explanation of the design of OP/OTAs
http://www.es.isy.liu.se/courses/ANDA/download/opampRef/ANTIK ON NN_LN_opampHandsouts_A.pdf

Compensation techniques
http://www.es.isy.liu.se/courses/ANDA/download/opampRef/ANTIK_ON NN_LN_opampCompensationTable_A.pdf

Amplifier classes

Not really covered in this course.

Different classes, such as

Class A, B, AB, C, D, E, F, G, H, I, K, S, T, Z, etc.

Class A

Essentially the common-source stage

Class AB

Essentially a push-pull configured class A

What did we do today?

Wrapped up the CMOS part of the course

Wrapped a discussion on stability and compensation

Looked on the opamp
macro level
chip level

What will we do next time?

Distortion

How is linearity of analog circuits defined?
What other cost measures are there to define analog quality?

Noise

What are the fundamental limits on performance and range?
What are the mathematical tools to find them?

