

Lecture 2, Amplifiers

CMOS, Analog building blocks

dileda marita

WWW, In. sc/onlin

steuripch rattsteknik 2003 unrätt andlig vatt EG/EU. ratt lovatt, chalestandi-/ avsaki ratt TTTT

mea sentenci

What did we do last time?

Mainly an introduction to the course

Labs, quizzes, exam, etc.

The CMOS transistor

PMOS vs NMOS

Operating regions (cut-off, linear, saturation)

Functionality (output current as a function of the width and length)

First amplifier and parameters

First a common-source with resistive load

013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

46 of 260

What will we do today?

Small-signal schematics

Linearization

Analog building blocks

Common-source, common-drain, common-gate, etc.

Frequency domain

2013-01-21::ANTIK_0029 (P2A)

Dominant poles

Multiple poles, stability

The transistor revisited

(b) PMOS

(a) NMOS

LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

The first amplifier revisited

A common-source amplifier

$$v_{out} = V_{DD} - R_L \cdot I_D$$

Saturation region (desired)

$$v_{out} = V_{DD} - R_L \cdot \alpha \cdot v_{eff}^2$$

Linear region

2013-01-21::ANTIK_0029 (P2A)

$$v_{out} = V_{DD} - R_L \cdot \alpha \cdot \left(2 v_{out} v_{eff} - v_{out}^2 \right)$$

The first amplifier revisited

Large-signal transfer characteristics

Position of DC point

Other design requirements

2013-01-21::ANTIK 0029 (P2A)

Analog Design, second course (ANDA)

<u>5</u>0 of 260

Small-signal schematics

Linearization around a DC point

Assume small variations around the DC point

Superimpose contributions from all sources to the output

Linearization implies no distortion, no clipping, etc.

Notice that there might be a trade-off between swing and max gain

The choice of DC point is non-trivial... maximum gain? maximum swing?

Linearization example

To LINGS UNIVERSITE O

Original

$$I_D = \frac{\mu C_{ox}}{2} \cdot \frac{W}{L} \cdot (V_{gs} - V_T)^2 \cdot \left| 1 + \frac{V_{ds}}{V_{\theta}} \right|$$

Apply partial derivation, i.e., linearize

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Linearization example, cont'd

THAT ON TWEE THE TO LAND THE TO LAND THE TO LAND THE TO TH

We assume the physical parameters to be constant

$$\Delta I_{D} = \frac{d I_{D}}{d V_{GS}} \cdot \Delta V_{GS} + \frac{d I_{D}}{d V_{DS}} \cdot \Delta V_{DS} + \frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}$$

Apply the chain rule

2013-01-21::ANTIK_0029 (P2A)

$$\frac{dI_D}{dV_T} \cdot \Delta V_T = \frac{dI_D}{dV_T} \cdot \frac{dV_T}{dV_{BS}} \cdot \Delta V_{BS}$$

Linearization example, cont'd

Introduce some nomenclature

$$\Delta I_{D} = \frac{d I_{D}}{\underbrace{d V_{GS}}_{g_{m}}} \cdot \Delta V_{GS} + \underbrace{\frac{d I_{D}}{d V_{DS}}}_{g_{ds}} \cdot \Delta V_{DS} + \underbrace{\frac{d I_{D}}{d V_{T}}}_{g_{mbs}} \cdot \underbrace{\frac{d V_{T}}{d V_{BS}}}_{g_{mbs}} \cdot \Delta V_{BS}$$

and skip the deltas

2013-01-21::ANTIK_0029 (P2A)

$$i_d = g_m \cdot v_{gs} + g_{ds} \cdot v_{ds} + g_{mbs} \cdot v_{bs}$$

Analog Design, second course (ANDA

Which gives us a transistor "consisting" of three current sources

LIU EXPANDING REALITY

The small signal model and its impact

Illustrating the small signal model

Some calculations

2013-01-21::ANTIK_0029 (P2A)

(More practice in the lessons)

Transistors compiled

2013-01-21::ANTIK_0029 (P2A)

How large are these values?

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Transistor gain vs region Expression Cut-off Linear Saturation $\frac{2}{\lambda \cdot v_{eff}} \frac{2\sqrt{\alpha}}{\lambda\sqrt{I_D}}$ $\frac{v_{ds}}{v_{eff} - v_{ds}}$ $A = \frac{g_m}{g_{ds}}$ $\frac{\kappa \cdot q}{\lambda \cdot k T}$ Where is highest gain? $\kappa \approx 0.75$ and $kT/q \approx 26$ mV. LIU EXPANDING REALITY

Analog Design, second course (ANDA)

2013-01-21::ANTIK_0029 (P2A)

The three amplifier stages

With passive load

The three amplifier stages, cont'd

With active load

The small signal exercises

Using the small signal approach to derive the gain

LIU EXPANDING REALITY

StopINGS U

Analog Design, second course (ANDA)

Expression	CS	CD	CG
DC gain, $A_0 \approx g_m / g_{out}$	$\approx \frac{g_m}{g_P + g_N}$	$\approx \frac{g_m}{g_m + g_P + g_N} \approx 1$	$\approx \frac{g_m}{g_P + g_N}$
Output impedance, $\approx g_{out}$	$\approx g_P + g_N$	$\approx g_m$	$\approx g_P + g_N$
Input impedance, $\approx g_{in}$	00	00	$\approx g_m$
Bandwidth, $p_1 \approx g_{out}/C_L$	$\approx \frac{g_P + g_N}{C_L}$	$\approx g_m/C_L$	$\approx \frac{g_P + g_N}{C_L}$
Unity gain, $\approx A_0 \cdot p_1$	$\approx g_m / C_L$	N/A (why?)	$\approx g_m / C_L$
2013-01-21::ANTIK 0029 (P2A)	Analog Design, second co	urse (ANDA)	U EXPANDING REALITY 61 of 26

Expression	CS	CD	CG*)
DC gain, $\frac{A_0 \approx g_m / g_{out}}{g_{out}}$	$\approx 1/\lambda \cdot v_{eff}$	<mark>≈1</mark>	$\approx 1/\lambda \cdot v_{eff}$
Output impedance, $\approx g_{out}$	$\approx \lambda I_D$	$\approx 2 I_D / v_{eff}$	$\approx \lambda I_D$
Input impedance, $\approx g_{in}$	00	00	$\approx 2 I_D / v_{eff}$
Bandwidth, $p_1 \approx g_{out} / C_L$	$\approx \lambda I_D / C_L$	$\approx 2 I_D / C_L \cdot v_{eff}$	$\approx \lambda I_D / C_L \cdot v_{eff}$
Unity gain, $\approx A_0 \cdot p_1$	$\approx I_D / C_L \cdot v_{eff}$	N/A (why?)	$\approx I_D / C_L \cdot v_{eff}$

LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

Amplifier When and what to use?

High-gain amplifier with high output impedance and high input Common-source impedance.

Drives capacitive loads, typically in feedback configuration.

Common-gate i

High-gain amplifier with high output impedance and "low" input impedance.

Drives capacitive loads, typically in feedback configuration.

Low-gain amplifier with "low" output impedance and high input Common-drain impedance.

Drives resistive loads, can be in open-loop.

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

How to increase gain?

THE LAND THE PARTY OF THE STATE

Assuming a simple common-source stage:

$$4 = \frac{g_m}{g_{out}} = \frac{1}{\lambda \cdot v_{eff}} = \frac{2\sqrt{\alpha}}{\lambda\sqrt{I_D}}$$

The answer depends on the biasing conditions!

Decrease v_{eff}

Decrease $\lambda \sim 1/L$, i.e., increase the channel length.

Decrease (!) the current I_D

Increase the transistor sizes, $\alpha \sim S \sim W$

Total gain is the product of all gains

Offers high swing

Might cost us more power consumption (each stage needs current)

LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

Improving the gain, the electrical option

AND ANGS UNIVERSITE

Revisit the expression on gain!

$$A = \frac{g_m}{g_{out}}$$

Increase the transconductance

Decrease the output conductance (i.e., increase output impedance)

We've done that kind of, c.f., lowering the v_{eff} , etc.

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

66 of 260

Cascodes, the hardware option

Introduce more hardware to increase impedance

Cascodes increase the gain

How? - a small-signal exercise

We must balance the load

··· ANTIK 0029

both in PMOS and NMOS "direction"

(Traditional way to maximize power efficiency)

So ... it's all about impedance levels

Cascodes

(Quickly) eats up the voltage headroom

For every diode-connected transistor, we loose one V_T of swing

We can save current since only one stage

Complex biasing schemes

013-01-21::ANTIK_0029 (P2A

"The output impedance is multiplied"

68 of 260

Cascodes, common-source example

Voltage swing

Calculating the gain

LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

Cascodes, common-source example

Formula still holds $A = g_m / g_{out}$ and the output conductance is

$$A = \frac{g_{m1}}{\frac{g_{n1} \cdot g_{n2}}{g_{m2}} + \frac{g_{p3} \cdot g_{p4}}{g_{m3}}} \approx \frac{g_{m1} \cdot g_{m2}}{2 \cdot g_{n1} \cdot g_{n2}}$$

Now, we have some more handles to increase (set) the gain.

Effective voltage of input can be decoupled.

Classical analog trade-offs to distribute the gain). But ... what happens to the gain if the impedance levels are not balanced?

LIU EXPANDING REALITY

Cascodes are also multiple stages ...

71 of 260

StopINGS .

VGS UN

Some conlusions on one slide

Cascodes eat up the swing

Cascodes save current compared to multi-stage

Cascodes and multi-stage have comparatively same area

Cascodes have more complex biasing schemes compared to multistage amplifiers

Cascodes might not be feasible in future (analog) designs

The frequency domain

THE TODAL OF THE STREET

Include the capacitor in your calculations

The frequency domain

Small-signal exercise

Impact of capacitor on common-source stage

Bode plot

Pole

DC gain

2013-01-21::ANTIK_0029 (P2A)

Unity-gain frequency

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Compilation

To LATORINGS UNIVERSITET & LATORIAN CS UNIVERSIT

The overall transfer function

$$A(s) = \frac{A_0}{1 + \frac{s}{p_1}} = \frac{g_m / g_{out}}{1 + \frac{s}{g_{out}} / C_L}$$

(Sw. "normalform")

Notice the trade-off between bandwidth and gain!

 $A_0 \cdot p_1 \approx \omega_{ug}$

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

LIU EXPANDING REALITY 75 of 260

Expression	CS (CD	CG*)
DC gain, $\frac{A_0 \approx \frac{g_m}{g_{out}}}{g_{out}}$	$\approx \frac{g_m}{g_P + g_N}$	$\approx \frac{g_m}{g_m + g_P + g_N} \approx 1$	$\approx \frac{g_m}{g_P + g_N}$
Output impedance, $\approx g_{out}$	$\approx g_P + g_N$	$\approx g_m$	$\approx g_P + g_N$
Bandwidth, $p_1 \approx \frac{g_{out}}{C_L}$	$\approx \frac{g_P + g_N}{C_L}$	$\approx \frac{g_m}{C_L}$	$\approx \frac{g_P + g_N}{C_L}$
Unity gain, $\approx A_0 \cdot p_1$	$\approx g_m / C_L$	N/A (why?)	$\approx g_m / C_L$
*) Course impedance r	at montioned a	as the evereice ma	nual

*) Source Impedance not mentioned, see the exercise manual.

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Expression	CS	CD	CG*)
DC gain, $\frac{A_0 \approx \frac{g_m}{g_{out}}}{g_{out}}$	$\approx \frac{1}{\lambda \cdot v_{eff}}$	≈1	$\approx \frac{1}{\lambda \cdot v_{eff}}$
Output impedance, $\approx g_{out}$	≈λI _D	$\approx \frac{2 I_D}{v_{eff}}$	<mark>≈λI_D</mark>
Bandwidth, $p_1 \approx \frac{g_{out}}{C_L}$	$\approx \frac{\lambda I_D}{C_L}$	$\approx \frac{2 I_D}{C_L \cdot v_{eff}}$	$\approx \frac{\lambda I_D}{C_L \cdot v_{eff}}$
Unity gain, $\approx A_0 \cdot p_1$	$\approx \frac{I_D}{C_L \cdot v_{eff}}$	N/A (why?)	$\approx \frac{I_D}{C_L \cdot v_{eff}}$
2013-01-21::ANTIK_0029 (P2A)	Analog Design, secon	chick Id course (ANDA)	LIU EXPANDING REALIT 77 of 2

Gain increased with multi-stage amplifiers

Analog Design, second course

Single-stage (cascodes) vs two-stage?

They will have the same DC gain

They will not have the same output impedance

Multiple poles ("one per stage")

The transfer function (in both cases) is

...ANTIK_0029

LIU EXPANDING REALITY

Multiple poles

AND STATES UNIVERSITY OF LAND ON THE STATES

Case 1 (CS+CG)

First amplifier sees low-impedance load: $(g_1 + g_{ml}) \|C_1 \approx g_{ml}\|C_1$

Second amplifier sees capacitive load: $g_{out} \approx g_2 ||C_2|$

Case 2 (CS+CS)

First amplifier sees high-impedance load $(g_1+0)||C_1 \approx g_1||C_1$

Second amplifier sees capacitive load: $g_{out} \approx g_2 \|C_2$

Notice that the g_2 in Case 2 is higher than g_2 in Case 1.

Regardless what you do ... Feedback

Preferably, we have a controlled system with a closed-loop gain of:

$$Y(s) = (X(s) - \beta(s) \cdot Y(s)) \cdot A(s) \Rightarrow$$

$$\frac{Y(s)}{X(s)} = \frac{A(s)}{1 + \beta(s) \cdot A(s)} = \frac{1/\beta(s)}{1 + \frac{1}{\beta(s) \cdot A(s)}}$$

Analog Design, second course (ANDA

A feedback factor of: $\beta(s)$

2013-01-21::ANTIK_0029 (P2A)

An open-loop gain of: $\beta(s) \cdot A(s)$

LIU EXPANDING REALITY

Why do you want controlled feedback?

Gain is now under control!

No variation with g_m/g_{ds} , instead given by (normally) high-accuracy

components

"Unlimited" drive capability

Isolation of input and output

Linearization

Remember, it is a regulation loop. It is designed to track the changes, anything added in the loop will be supressed.

The problem: Stability

In short: the transfer function must be designed such that

 $\beta(s) \cdot A(s) \neq -1$

If this is the case, we have an infinitely high transfer function

(In reality, the whole proof is quite complex.)

Phase margin (how far are we off from this to happen)

Poor phase margin gives ringing in the output when applying step

Critically damped signal at approximately 70 degrees (poles become real rather than complex pair, i.e., they are well splitted)

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

The problem: Stability, cont'd

Bode plot

What happens to the transfer characteristics?

Phase margin

Step response

Settling

Oscillations

Critically damped at 70 degrees

LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA

We need to be a bit more systematic

THAT OF THE SUNIVERSITE

The model (high-impedance load) and focus on two-pole systems

Dominant pole assumption (output)

Assuming pole splitting, $p_2 \gg p_1$, gives us

$$A(s) = \frac{A_1 \cdot A_2}{\left|1 + \frac{s}{p_{11}}\right| \cdot \left|1 + \frac{s}{p_{12}}\right|} \approx \frac{A_1 \cdot A_2}{1 + \frac{s}{p_1} + \frac{s^2}{p_1 \cdot p_2}}$$

This implies: $\omega_{ug} \approx A_1 \cdot A_2 \cdot p_1$ and

$$\Phi_{m} = 180 - \arg A(j \omega_{ug}) = 180 - \operatorname{atan} \frac{\omega_{ug}}{p_{1}} - \operatorname{atan} \frac{\omega_{ug}}{p_{2}} \approx 90 - \operatorname{atan} \frac{\omega_{ug}}{p_{2}}$$

$$\Phi_{m} \approx 90 - \operatorname{atan} \left(A_{0} \cdot \frac{p_{1}}{p_{2}} \right)$$
LIU EXPANDING REALITY

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

The formulas (dominant load!)

Unity-gain frequency

$$\omega_{ug} \approx \frac{g_{mI} \cdot g_{mII}}{G_I \cdot G_{II}} \cdot \frac{G_{II}}{C_{II}} = \frac{g_{mI} \cdot g_{mII}}{G_I \cdot C_{II}}$$

Phase margin

$$\phi_{m} \approx 90 - atan \frac{\omega_{ug}}{p_{2}} = 90 - atan \frac{\frac{g_{mI} \cdot g_{mII}}{G_{I} \cdot C_{II}}}{\frac{G_{I}}{C_{I}}} = 90 - atan \frac{g_{mI} \cdot g_{mII} \cdot C_{I}}{G_{I}^{2} \cdot C_{II}}$$

etc., etc., etc. -- We need to be a bit more organized...

2013-01-21::ANTIK_0029 (P2A)

Analog Design, second course (ANDA)

Compensation, Miller capacitance

Introduced zero	Parasitic pole	Dominant pole	Unity-gain
$z_1 = \frac{g_{mII}}{C_C}$	$p_2 = \frac{-g_{mII}}{C_{II}}$	$p_1 = \frac{-G_I \cdot G_{II}}{g_{mII} \cdot C_C}$	$\omega_{ug} = \frac{g_{mI}}{C_c}$

Introduced zero	Parasitic pole	Phase margin	Volta II.a
$z_1 \approx 10 \cdot \omega_{ug}$	$p_2 \approx 2.2 \cdot \omega_{ug}$	≈60	

Dominant pole moves "down", parasitic pole moves "up"

Parasitic zero added (harmful for phase margin)

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Compensation, Nulling resistor 1

Introduced zero	Parasitic poles	Dominant pole Unity-gain
$z_1 = \frac{g_{mII}}{C_C} \cdot \frac{1}{1 - R_Z \cdot g_{mII}}$	$p_2 = \frac{-g_{mII}}{C_{II}}, p_3 = \frac{-1}{R_Z \cdot C_I}$	$\frac{1}{q_{I}} \qquad p_{1} = \frac{-G_{I} \cdot G_{II}}{g_{mII} \cdot C_{C}} \qquad \omega_{ug} = \frac{g_{mI}}{C_{C}}$
	$R_{Z} = \frac{1}{g_{mII}} \cdot \left(1 + \frac{Q_{mII}}{Q_{mII}}\right)$	
Introduced zero	Parasitic pole	Phase margin
$z_1 \rightarrow p_2$	$p_3 \approx 1.73 \cdot \omega_{ug}$	≈60
levett chalestander / avsake rat III	Erouri	LIU EXPANDING REALITY

Compensation, Nulling resistor 2

Introduced zero	Parasitic poles	Dominant pole Unity-gain
$z_1 = \frac{g_{mII}}{C_C} \cdot \frac{1}{1 - R_Z \cdot g_m}$	$\frac{1}{II} p_2 = \frac{-g_{mII}}{C_{II}}, p_3 = \frac{-1}{R_Z \cdot C_{II}}$	$p_1 = \frac{-G_I \cdot G_{II}}{g_{mII} \cdot C_C} \qquad \qquad$
	$R_{Z} = \frac{1}{g_{mII}}$	
Introduced zero	Parasitic pole	Phase margin
$z_1 \rightarrow \infty$	$p_2 \approx 1.73 \cdot \omega_{ug}$, $p_3 > 10 \cdot \omega_{ug}$	≈60

Compensation

What is the cost associated with compensation?

StopINGS.

VCC TIN

Compensation, two cases:

1) "Internal" node sees a low-impedance node

Typically: output load dominates, we should drive a capacitive load

Load-compensation, i.e., increase cap externally

2) "Internal" node sees a high-impedance node

Typically: internal load dominates, and we should drive a resistive load

Miller-compensation, i.e., utilize the second-stage gain to multiply C_C

As always, some exceptions to the rule:

Nested compensation, active compensation, ... and more ...

LIU EXPANDING REALITY

Analog Design, second course (ANDA)

Compensation compiled:

Rule-of-thumbs for hand-calculation

Use e.g. MATLAB to support calculations for understanding

/site/edu/es/ANTIK/antikLab/m/antikPoleZero.m

/site/edu/es/ANTIK/antikLab/m/antikSettling.m

In the end, use the simulator.

It has to be robust over temperature and other variations.

Analog Design, second course

Hand calculations are incorrect per definition

Model corresponds quite well with circuit once you have identified the different stages

See for example exercises

-21::ANTIK_0029 (P2A

LIU EXPANDING REALITY

What did we do today?

The most common amplifier stages

Frequency domain

2013-01-21::ANTIK_0029 (P2A)

Stability

Some top-level tips-and-tricks

Analog Design, second course (ANDA)

97 of 260

What will we do next time?

More on amplifiers

2013-01-21::ANTIK_0029 (P2A)

Operational amplifiers

Differential amplifiers

Analog Design, second course (ANDA)

LIU EXPANDING REALITY