Lecture 2, Amplifiers

CMOS, Analog building blocks

What did we do last time?

Mainly an introduction to the course
Labs, quizzes, exam, etc.

The CMOS transistor

PMOS vs NMOS
Operating regions (cut-off, linear, saturation)
Functionality (output current as a function of the width and length)
First amplifier and parameters
First a common-source with resistive load

What will we do today?

Small-signal schematics

Linearization

Analog building blocks

Common-source, common-drain, common-gate, etc.

Frequency domain

Dominant poles
Multiple poles, stability

The transistor revisited

(a) NMOS

(b) PMOS

The first amplifier revisited

A common-source amplifier

$$
v_{\text {out }}=V_{D D}-R_{L} \cdot I_{D}
$$

Saturation region (desired)

$$
v_{\text {out }}=V_{D D}-R_{L} \cdot \alpha \cdot v_{\text {eff }}^{2}
$$

Linear region

$$
v_{\text {out }}=V_{D D}-R_{L} \cdot \alpha \cdot\left(2 v_{\text {out }} v_{\text {eff }}-v_{\text {out }}^{2}\right)
$$

The first amplifier revisited

Large-signal transfer characteristics

Position of DC point

Other design requirements

Small-signal schematics

Linearization around a DC point

Assume small variations around the DC point
Superimpose contributions from all sources to the output
Linearization implies no distortion, no clipping, etc.
Notice that there might be a trade-off between swing and max gain

The choice of DC point is non-trivial... maximum gain? maximum swing?

Linearization example

Original

$$
\left.I_{D}=\frac{\mu C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{g s}-V_{T}\right)^{2} \cdot 11+\frac{V_{d s}}{V_{\theta}}\right)
$$

Apply partial derivation, i.e., linearize

$$
\begin{gathered}
\Delta I_{D}=\frac{d I_{D}}{d \mu} \cdot \Delta \mu+\frac{d I_{D}}{d C_{o x}} \cdot \Delta C_{o x}+\frac{d I_{D}}{d W} \cdot \Delta W+\frac{d I_{D}}{d L} \cdot \Delta L+ \\
\frac{d I_{D}}{d V_{G S}} \cdot \Delta V_{G S}+\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}+\frac{d I_{D}}{d V_{D S}} \cdot \Delta V_{D S}+\frac{d I_{D}}{d V_{\theta}} \cdot \Delta V_{\theta}
\end{gathered}
$$

Linearization example, cont'd

We assume the physical parameters to be constant

$$
\Delta I_{D}=\frac{d I_{D}}{d V_{G S}} \cdot \Delta V_{G S}+\frac{d I_{D}}{d V_{D S}} \cdot \Delta V_{D S}+\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}
$$

Apply the chain rule

$$
\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}=\frac{d I_{D}}{d V_{T}} \cdot \frac{d V_{T}}{d V_{B S}} \cdot \Delta V_{B S}
$$

Linearization example, cont'd

Introduce some nomenclature

$$
\Delta I_{D}=\underbrace{\frac{d I_{D}}{d V_{G S}}}_{g_{m}} \cdot \Delta V_{G S}+\underbrace{\frac{d I_{D}}{d V_{D S}}}_{g_{d s}} \cdot \Delta V_{D S}+\underbrace{\frac{d I_{D}}{d V_{T}} \cdot \frac{d V_{T}}{d V_{B S}}}_{g_{m b s}} \cdot \Delta V_{B S}
$$

and skip the deltas

$$
i_{d}=g_{m} \cdot v_{g s}+g_{d s} \cdot v_{d s}+g_{m b s} \cdot v_{b s}
$$

Which gives us a transistor "consisting" of three current sources

The small signal model and its impact

Illustrating the small signal model

Some calculations

(More practice in the lessons)

Transistors compiled

$\left.\begin{array}{ccc}\text { Parameter } & \text { Cut-off } & \text { Linear } \\ g_{m} & \frac{\kappa I_{D}}{k T / q} & 2 \alpha v_{d s}\end{array}\right] \frac{2 I_{D}}{v_{e f f}}$ and $2 \sqrt{\alpha I_{D}}$

How large are these values?

Transistor gain vs region

Expression
Cut-off

$$
A=\frac{g_{m}}{g_{d s}} \quad \frac{\kappa \cdot q}{\lambda \cdot k T}
$$

$$
\frac{v_{d s}}{v_{e f f}-v_{d s}}
$$

$$
\frac{2}{\lambda \cdot v_{e f f}} \frac{2 \sqrt{\alpha}}{\lambda \sqrt{I_{D}}}
$$

Where is highest gain?

$$
\kappa \approx 0.75 \text { and } k T / q \approx 26 \mathrm{mV} .
$$

The three amplifier stages

With passive load

(a) NMOS CS

(b) NMOS CD

(c) NMOS CG

The three amplifier stages, cont'd

With active load

Why active load?

The small signal exercises

Using the small signal approach to derive the gain

Amplifier stages, compiled 1

Expression

DC gain, $A_{0} \approx g_{m} / g_{\text {out }}$
Output impedance, $\approx g_{\text {out }}$
Input impedance, $\approx g_{\text {in }}$

Bandwidth, $p_{1} \approx g_{\text {out }} / C_{L}$

Unity gain, $\approx A_{0} \cdot p_{1}$
CS

$$
\approx \frac{g_{m}}{g_{P}+g_{N}}
$$

$$
\approx g_{P}+g_{N}
$$

$$
\infty
$$

$$
\approx \frac{g_{P}+g_{N}}{C_{L}}
$$

$$
\approx g_{m} / C_{L}
$$

CD

$$
\begin{gathered}
\approx \frac{g_{m}}{g_{m}+g_{P}+g_{N}} \approx 1 \\
\approx g_{m}
\end{gathered}
$$

$$
\infty
$$

$$
\approx g_{m} / C_{L}
$$

N/A (why?)

CG

$$
\begin{aligned}
& \approx \frac{g_{m}}{g_{P}+g_{N}} \\
& \approx g_{P}+g_{N} \\
& \approx g_{m}
\end{aligned}
$$

$$
\approx \frac{g_{P}+g_{N}}{C_{L}}
$$

$\approx g_{m} / C_{L}$

Amplifier stages, compiled 2

Expression

DC gain, $A_{0} \approx g_{m} / g_{\text {out }}$
Output impedance, $\approx g_{\text {out }}$ Input impedance, $\approx g_{\text {in }}$

Bandwidth, $p_{1} \approx g_{\text {out }} / C_{L}$
Unity gain, $\approx A_{0} \cdot p_{1}$

CS
$\approx 1 / \lambda \cdot v_{\text {eff }}$
$\approx \lambda I_{D}$
∞
$\approx \lambda I_{D} / C_{L}$
$\approx I_{D} / C_{L} \cdot v_{\text {eff }}$

CD
≈ 1
$\approx 2 I_{D} / v_{\text {eff }}$
∞
$\approx 2 I_{D} / C_{L} \cdot v_{e f f}$
N/A (why?)

CG*)

$$
\begin{gathered}
\approx 1 / \lambda \cdot v_{\text {eff }} \\
\approx \lambda I_{D} \\
\approx 2 I_{D} / v_{\text {eff }} \\
\approx \lambda I_{D} / C_{L} \cdot v_{\text {eff }} \\
\approx I_{D} / C_{L} \cdot v_{\text {eff }}
\end{gathered}
$$

Amplifier stages, compiled 3

Amplifier When and what to use?

High-gain amplifier with high output impedance and high input Common-source impedance.

Drives capacitive loads, typically in feedback configuration.
High-gain amplifier with high output impedance and "low" input Common-gate impedance.

Drives capacitive loads, typically in feedback configuration.
Low-gain amplifier with "low" output impedance and high input Common-drain impedance.

Drives resistive loads, can be in open-loop.

How to increase gain?

Assuming a simple common-source stage:

$$
A=\frac{g_{m}}{g_{\text {out }}}=\frac{1}{\lambda \cdot v_{e f f}}=\frac{2 \sqrt{\alpha}}{\lambda \sqrt{I_{D}}}
$$

The answer depends on the biasing conditions!
Decrease $v_{\text {eff }}$
Decrease $\lambda \sim 1 / L$, i.e., increase the channel length.
Decrease (!) the current I_{D}
Increase the transistor sizes, $\alpha \sim S \sim W$

Improving the gain, the obvious option

We can put several stages in series

Total gain is the product of all gains Offers high swing

Might cost us more power consumption (each stage needs current)

Improving the gain, the electrical option

Revisit the expression on gain!

$$
A=\frac{g_{m}}{g_{\text {out }}}
$$

Increase the transconductance
Decrease the output conductance (i.e., increase output impedance)

We've done that kind of, c.f., lowering the $v_{\text {eff }}$, etc.

Cascodes, the hardware option

Introduce more hardware to increase impedance

Cascodes increase the gain
How? - a small-signal exercise
We must balance the load
both in PMOS and NMOS "direction"
(Traditional way to maximize power efficiency)
So ... it's all about impedance levels

Cascodes

(Quickly) eats up the voltage headroom
For every diode-connected transistor, we loose one V_{T} of swing
We can save current since only one stage

Complex biasing schemes
"The output impedance is multiplied"

Cascodes, common-source example

Voltage swing

Calculating the gain

Cascodes, common-source example

Formula still holds $A=g_{m} / g_{\text {out }}$ and the output conductance is

$$
A=\frac{g_{m 1}}{\frac{g_{n 1} \cdot g_{n 2}}{g_{m 2}}+\frac{g_{p 3} \cdot g_{p 4}}{g_{m 3}}} \approx \frac{g_{m 1} \cdot g_{m 2}}{2 \cdot g_{n 1} \cdot g_{n 2}}
$$

Now, we have some more handles to increase (set) the gain.
Effective voltage of input can be decoupled.
Classical analog trade-offs to distribute the gain).
But ... what happens to the gain if the impedance levels are not balanced?

Cascodes are also multiple stages ...

Some conlusions on one slide

Cascodes eat up the swing
Cascodes save current compared to multi-stage
Cascodes and multi-stage have comparatively same area
Cascodes have more complex biasing schemes compared to multistage amplifiers
Cascodes might not be feasible in future (analog) designs

The frequency domain

Include the capacitor in your calculations

The frequency domain

Small-signal exercise
Impact of capacitor on common-source stage

Bode plot
Pole

DC gain
Unity-gain frequency

Compilation

The overall transfer function

$$
A(s)=\frac{A_{0}}{1+\frac{s}{p_{1}}}=\frac{g_{m} / g_{\text {out }}}{1+\frac{s}{g_{\text {out }} / C_{L}}}
$$

(Sw. "normalform")
Notice the trade-off between bandwidth and gain!

$$
A_{0} \cdot p_{1} \approx \omega_{u g}
$$

Amplifier stages, compiled 1

Expression

DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$

Output impedance, $\approx g_{\text {out }}$
Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$
Unity gain, $\approx A_{0} \cdot p_{1}$

CS

$$
\approx \frac{g_{m}}{g_{P}+g_{N}}
$$

$$
\approx g_{P}+g_{N}
$$

$$
\approx \frac{g_{P}+g_{N}}{C_{L}}
$$

$$
\approx g_{m} / C_{L}
$$

CD
$\approx \frac{g_{m}}{g_{m}+g_{P}+g_{N}} \approx 1$
$\approx g_{m}$
$\approx \frac{g_{m}}{C_{L}}$
N/A (why?)
$\approx g_{P}+g_{N}$
$\approx \frac{g_{P}+g_{N}}{C_{L}}$
$\approx g_{m} / C_{L}$
CG*)
$\approx \frac{g_{m}}{g_{P}+g_{N}}$
*) Source impedance not mentioned, see the exercise manual.

Amplifier stages, compiled 2

Expression
 DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$

CS
CD

$$
\approx \frac{1}{\lambda \cdot v_{e f f}} \quad \approx 1
$$

CG*)

$$
\approx \frac{1}{\lambda \cdot v_{e f f}}
$$

Output impedance, $\approx g_{\text {out }}$

$$
\begin{array}{lll}
\approx \lambda I_{D} & \approx \frac{2 I_{D}}{v_{e f f}} & \approx \lambda I_{D} \\
\approx \frac{\lambda I_{D}}{C_{L}} & \approx \frac{2 I_{D}}{C_{L} \cdot v_{e f f}} & \approx \frac{\lambda I_{D}}{C_{L} \cdot v_{e f f}} \\
\approx \frac{I_{D}}{C_{L} \cdot v_{e f f}} & \text { N/A (why?) } & \approx \frac{I_{D}}{C_{L} \cdot v_{e f f}}
\end{array}
$$

Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$

Unity gain, $\approx A_{0} \cdot p_{1}$

Gain increased with multi-stage amplifiers

Single-stage (cascodes) vs two-stage?
They will have the same DC gain

They will not have the same output impedance Multiple poles ("one per stage")

The transfer function (in both cases) is

$$
A(s)=\frac{A_{1} \cdot A_{2}}{\left.\left\lvert\, 1+\frac{s}{p_{11}}\right.\right) \cdot\left|1+\frac{s}{p_{12}}\right|}
$$

Multiple poles

Case 1 (CS+CG)

First amplifier sees low-impedance load: $\left(g_{1}+g_{m 1}\right)\left\|C_{1} \approx g_{m 1}\right\| C_{1}$
Second amplifier sees capacitive load: $g_{\text {out }} \approx g_{2} \| C_{2}$

Case 2 (CS+CS)

First amplifier sees high-impedance load $\left(g_{1}+0\right)\left\|C_{1} \approx g_{1}\right\| C_{1}$
Second amplifier sees capacitive load: $g_{\text {out }} \approx g_{2} \| C_{2}$

Notice that the g_{2} in Case 2 is higher than g_{2} in Case 1.

Regardless what you do ... Feedback

Preferably, we have a controlled system with a closed-loop gain of:

$$
\begin{gathered}
Y(s)=(X(s)-\beta(s) \cdot Y(s)) \cdot A(s) \Rightarrow \\
\frac{Y(s)}{X(s)}=\frac{A(s)}{1+\beta(s) \cdot A(s)}=\frac{1 / \beta(s)}{1+\frac{1}{\beta(s) \cdot A(s)}}
\end{gathered}
$$

A feedback factor of: $\boldsymbol{\beta}(s)$

An open-loop gain of: $\beta(s) \cdot A(s)$

Why do you want controlled feedback?

Gain is now under control!

No variation with $g_{m} / g_{d s}$, instead given by (normally) high-accuracy
components
"Unlimited" drive capability
Isolation of input and output
Linearization

Remember, it is a regulation loop. It is designed to track the changes, anything added in the loop will be supressed.

The problem: Stability

In short: the transfer function must be designed such that

$$
\beta(s) \cdot A(s) \neq-1
$$

If this is the case, we have an infinitely high transfer function (In reality, the whole proof is quite complex.)

Phase margin (how far are we off from this to happen)
Poor phase margin gives ringing in the output when applying step
Critically damped signal at approximately 70 degrees (poles become real rather than complex pair, i.e., they are well splitted)

The problem: Stability, cont'd

Bode plot
What happens to the transfer characteristics?

Phase margin
Step response
Settling
Oscillations
Critically damped at 70 degrees

We need to be a bit more systematic

The model (high-impedance load) and focus on two-pole systems

$$
p_{1}=\frac{G_{I}}{C_{I}}, p_{2}=\frac{G_{I I}}{C_{I I}}, A_{1}=\frac{g_{m I}}{G_{I}}, A_{2}=\frac{g_{m I I}}{G_{I I}}
$$

Dominant pole assumption (output)

Assuming pole splitting, $p_{2} \gg p_{1}$, gives us

$$
A(s)=\frac{A_{1} \cdot A_{2}}{\left(1+\frac{s}{p_{11}}\right) \cdot\left(1+\frac{s}{p_{12}}\right)} \approx \frac{A_{1} \cdot A_{2}}{1+\frac{s}{p_{1}}+\frac{s^{2}}{p_{1} \cdot p_{2}}}
$$

This implies: $\omega_{u g} \approx A_{1} \cdot A_{2} \cdot p_{1}$ and

$$
\begin{aligned}
& \phi_{m}=180-\arg A\left(j \omega_{u g}\right)=180-\operatorname{atan} \frac{\omega_{u g}}{p_{1}}-\operatorname{atan} \frac{\omega_{u g}}{p_{2}} \approx 90-\operatorname{atan} \frac{\omega_{u g}}{p_{2}} \\
& \phi_{m} \approx 90-\operatorname{atan}\left(A_{0} \cdot \frac{p_{1}}{p_{2}}\right)
\end{aligned}
$$

The formulas (dominant load!)

Unity-gain frequency

$$
\omega_{u g} \approx \frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot G_{I I}} \cdot \frac{G_{I I}}{C_{I I}}=\frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot C_{I I}}
$$

Phase margin

$$
\phi_{m} \approx 90-\operatorname{atan} \frac{\omega_{u g}}{p_{2}}=90-\operatorname{atan} \frac{\frac{g_{m I} \cdot g_{m I I}}{G_{I} \cdot C_{I I}}}{\frac{G_{I}}{C_{I}}}=90-\operatorname{atan} \frac{g_{m I} \cdot g_{m I I} \cdot C_{I}}{G_{I}^{2} \cdot C_{I I}}
$$

etc., etc., etc. -- We need to be a bit more organized...

Compensation, poles are too close

The "cloud" could be a capacitor or series resistor-capacitor.

Compensation, Miller capacitance

Introduced zero	Parasitic pole	Dominant pole	Unity-gain
$z_{1}=\frac{g_{m I I}}{C_{C}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$

Introduced zero	Parasitic pole	Phase margin
$z_{1} \approx 10 \cdot \omega_{u g}$	$p_{2} \approx 2.2 \cdot \omega_{u g}$	≈ 60

Dominant pole moves "down", parasitic pole moves "up"
Parasitic zero added (harmful for phase margin)

Compensation, Nulling resistor 1

Introduced zero	Parasitic poles	Dominant pole Unity-gain	
$z_{1}=\frac{g_{m I I}}{C_{C}} \cdot \frac{1}{1-R_{Z} \cdot g_{m I I}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}, p_{3}=\frac{-1}{R_{Z} \cdot C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$
$R_{Z}=\frac{1}{g_{m I I}} \cdot\left(1+\frac{C_{I I}}{C_{C}}\right)$			

Introduced zero	Parasitic pole	Phase margin
$z_{1} \rightarrow p_{2}$	$p_{3} \approx 1.73 \cdot \omega_{u g}$	≈ 60

Compensation, Nulling resistor 2

Introduced zero	Parasitic poles	Dominant pole Unity-gain	
$z_{1}=\frac{g_{m I I}}{C_{C}} \cdot \frac{1}{1-R_{Z} \cdot g_{m I I}}$	$p_{2}=\frac{-g_{m I I}}{C_{I I}}, p_{3}=\frac{-1}{R_{Z} \cdot C_{I I}}$	$p_{1}=\frac{-G_{I} \cdot G_{I I}}{g_{m I I} \cdot C_{C}}$	$\omega_{u g}=\frac{g_{m I}}{C_{C}}$

$$
R_{Z}=\frac{1}{g_{m I I}}
$$

Introduced zero	Parasitic pole	Phase margin
$z_{1} \rightarrow \infty$	$p_{2} \approx 1.73 \cdot \omega_{u g}, p_{3}>10 \cdot \omega_{u g}$	≈ 60

Poles and zeros revisited

Stable?

Poles and zeros revisited

Stable?

Compensation

What is the cost associated with compensation?

Compensation, two cases:

1) "Internal" node sees a low-impedance node

Typically: output load dominates, we should drive a capacitive load
Load-compensation, i.e., increase cap externally
2) "Internal" node sees a high-impedance node

Typically: internal load dominates, and we should drive a resistive load

Miller-compensation, i.e., utilize the second-stage gain to multiply C_{C}
As always, some exceptions to the rule:
Nested compensation, active compensation, ... and more ...

Compensation compiled:

Load compensation

Cap + Res

Rule-of-thumbs for hand-calculation

Use e.g. MATLAB to support calculations for understanding

```
/site/edu/es/ANTIK/antikLab/m/antikPoleZero.m
```

/site/edu/es/ANTIK/antikLab/m/antikSettling.m

In the end, use the simulator.
It has to be robust over temperature and other variations.
Hand calculations are incorrect per definition
Model corresponds quite well with circuit once you have identified the different stages

See for example exercises

What did we do today?

The most common amplifier stages

Frequency domain

Stability

Some top-level tips-and-tricks

What will we do next time?

More on amplifiers

Operational amplifiers
Differential amplifiers

