

Lecture 9, ATIK

Data converters 2

har colmi, semp dilèda marité

www.lin.sc/onlin

skovinch vettsteknih 2002 urrätt endlig vett EG/EU.vett (vrett, chalestands/ Evsek vätt is afterwards

Jistemin asih

LIU EXPANDING REALITY

What did we do last time?

Data converters

Fundamentals

Overview of different types of data converters

A first glance at oversampling

LIU EXPANDING REALITY 250 (514

What will we do today?

Recapture the oversamping data converters

Interpolating/Decimating

Sigma-delta modulator

DACs

Designing a current-steering DAC

LIU EXPANDING REALITY

Current-steering DAC

All current directed to the output implies high efficiency

No buffer required, implies high speed

Short design time

Current output and no buffer implies now slow rate limitations

$$I_{out}(X) = X \cdot I_{unit} = \sum x_k \cdot 2^{k-1} \cdot I_{unit}$$

with

$$X = X_0 + \Delta X$$

gives

$$V_{out}(X) = Z_L \cdot I_{out}(X) = X \cdot Z_L \cdot I_{unit} = Z_L \cdot \sum x_k \cdot 2^{k-1} \cdot I_{unit}$$

LIU EXPANDING REALITY

Current-steering DAC, MOS implementation

Switches are implemented by NMOS

Transmission gates normally does not make any impact

Current sources are typically cascoded transistors

C.f. current mirror

Each weight consists of k unit sources in parallel

LIU EXPANDING REALITY

Current-steering DAC, main design tasks

Designing a good differential pair

 Z_{out}

Designing accurate current mirrors

Optimization

Trade-offs

Cascaded current source for high output impedance

LIU EXPANDING REALITY

Output impedance

Form the differential output

$$V_{out}(\Delta X) = \frac{Z_L \cdot I_{unit} \cdot (X_0 + \Delta X)}{1 + Z_L \cdot Y_{unit} \cdot (X_0 + \Delta X)} - \frac{Z_L \cdot I_{unit} \cdot (X_0 - \Delta X)}{1 + Z_L \cdot Y_{unit} \cdot (X_0 - \Delta X)}$$

Scale and introduce helping variables

$$\frac{V_{out}(\Delta X)}{Z_L \cdot I_{unit} \cdot X_0} = \frac{1 + \delta x}{1 + \eta \cdot (1 + \delta x)} - \frac{1 - \delta x}{1 + \eta \cdot (1 - \delta x)}$$
$$\frac{V_{out}(\Delta X)}{Z_L \cdot I_{unit} \cdot X_0} = \frac{2 \delta x}{(1 + \eta \cdot (1 + \delta x)) \cdot (1 + \eta \cdot (1 - \delta x))}$$

and approximate

$$\frac{V_{out}(\Delta X)}{Z_L \cdot I_{unit} \cdot X_0} = \frac{2\delta x/(1+\eta)^2}{1-\left(\frac{\eta}{1+\eta}\right)^2 \cdot \delta x^2} \approx \frac{2\delta x}{(1+\eta)^2} \cdot \left(1+\left(\frac{\eta}{1+\eta}\right)^2 \cdot \delta x^2\right)$$

LIU EXPANDING REALITY

Output impedance, linearity requirement

Harmonic distortion is the power ratio between fundamental and distortion term:

$$HD_{3} \sim \frac{1}{8 \cdot \left(\frac{\eta}{1+\eta}\right)^{4}} = \frac{1}{8} + \frac{1}{8 \cdot \eta^{4}} \approx \frac{1}{8 \cdot \eta^{4}} = \frac{1}{8 \cdot \left(Z_{L} \cdot Y_{unit} \cdot X_{0}\right)^{4}} = \frac{1}{8} \cdot \left(\frac{Z_{unit}/Z_{L}}{2^{N-1}}\right)^{4}$$

For a given output impedance, Z_{unit} :

With more bits, the harmonic distortion gets worse With a larger load resistance, the distortion gets worse

Example:

$$Z_{unit} = 1 \,\mathrm{M}\,\Omega$$
, $Z_L = 50\,\Omega$, $N = 10$ gives $\mathrm{HD}_3 \approx 55$ dB such that
 $\mathrm{ENOB} = \frac{\mathrm{HD}_3 - 1.76}{6.02} \approx 9$ bits

LIU EXPANDING REALITY

The higher up in frequency, the worse impedance ratio!

LIU EXPANDING REALITY

Impact of capacitances

Single-transistor has pole/zero at

$$p_1 = \frac{g_{ds}}{C}, \ z_1 = \frac{g_m}{C}$$

DC

$$R_{out} = \frac{g_m}{g_P^2} \sim \frac{L_{src} \cdot \sqrt{(WL)_{sw}}}{I_{unit}^{1.5}}$$

Low current, (very!!!) long source transistor, and large switches.

The latter not feasible due to speed and the fact that the capacitance increases.

Also here we get a requirement on the current and transistors sizes.

LIU EXPANDING REALITY

259 (514

high speed

Impact of binary weighted DACs

Mismatch errors will cause differences in weights

Assume errors in the most significant bit (MSB) only in this example.

KÖPINGS

Architectural choices, segmented $x_0(nT) = x_1(nT)$ $y_2(nT)$ $y_0(nT)$ $y_1(nT)$ $I_{out}(X) = X \cdot I_{unit} = x_M \cdot \sum y_k \cdot 1 \cdot I_{unit} + \sum x_k \cdot 2^{k-1} \cdot I_{unit}$ LIU EXPANDING REALITY

Go back to the binary and consider the square-wave error

$$HD_{3} = \frac{P_{s}}{P_{\epsilon,3}} = \frac{\frac{2^{2N}}{8} \cdot I_{unit}^{2}}{\frac{2^{N+2} \cdot \sigma_{unit}^{2}}{9\pi^{2}}} = 2^{N} \cdot \frac{9\pi^{2}}{32} \cdot \frac{I_{unit}^{2}}{\sigma_{unit}^{2}} \approx \frac{3 \cdot 2^{N}}{\sigma_{unit}^{2}} = \frac{3 \cdot 2^{N}}{\sigma_{r}^{2}}$$

All architectures (including quantization noise)

$$\text{SNDR} = \frac{3 \cdot 2^{2N-1}}{1 + 3 \cdot \sigma_r^2 \cdot 2^{N+1}}$$

There is a trade-off between linearity and noise! Which is worst for your application?

LIU EXPANDING REALITY

264

Consider the effective number of bits instead:

$$\mathrm{SNDR} = \frac{3 \cdot 2^{2N-1}}{1 + 6 \cdot \sigma_r^2 \cdot 2^N} \Rightarrow \mathrm{ENOB} = N - \frac{1}{2} \cdot \log_2 \left(1 + 6 \, \sigma_r^2 \cdot 2^N\right)$$

such that (assume 3-sigma for higher yield)

$$\sigma_r = \frac{1}{3} \cdot \sqrt{\frac{2^{2(N-\text{ENOB})} - 1}{6 \cdot 2^N}}$$

Assume the target is **12-bit** performance with a nominal **14-bit** DAC:

 $\sigma_r \approx 0.4$ %

Is this a big number?

LIU EXPANDING REALITY

The random, relative error in current is given by

$$\sigma_r^2 = \sigma^2 \left| \frac{\Delta I}{I_{unit}} \right| = \frac{A_\beta^2}{WL} + \frac{4 A_{VT}^2}{V_{eff}^2 \cdot WL} \text{ giving } WL = \frac{1}{\sigma_r^2} \cdot \left| A_\beta^2 + \frac{4 A_{VT}^2}{V_{eff}^2} \right|$$

Example values:

$$V_{eff} = 0.5$$
 V, $A_{\beta} = 2$ % um, $A_{VT} = 7$ mV um, and $\sigma_r \approx 0.4$ %

which gives

 $WL\approx70$ sq um

266 (514

LIU EXPANDING REALITY

But there are also gradients and intradependencies at hand.

Bad vs better layout:

/Α	0	1	1	4	N/A	2	
2	2	2	2	1	4	0	
4	4	4	4	2	4	4	
4	4	4	4	4	2	4	

LIU EXPANDING REALITY

LIU EXPANDING REALITY

Encoded array structure

AND THOPINGS Minimizing the cap in the sensitive node 2 Array, cont'd L first MSBs Binary-to-thermometer K second MSBs

LIU EXPANDING REALITY 270 (514)

Array-based architecture

StipINGS U,

Here is where we need the entire row pointer, otherwise this would happen:

LIU EXPANDING REALITY

LIU EXPANDING REALITY

No scrambled structure

The error is strongly signal-dependent (c.f. low number of bits)

THAT OPTINGS UNIVERSITE A

Scrambled structure

Scrambling removes some (most) of the signal-dependency

THE OPINGS UNIVERSITET O

The effect in the frequency domain

Notice, though, that the SNDR is the same!

Improve the SNDR by filtering (already in place due to the oversampling)

Biasing scheme

Trade-off between speed and noise supression!

LIU EXPANDING REALITY

Biasing scheme

More branches implies more mismatch and noise. Trade-off!

LIU EXPANDING REALITY

280 (514

AtopINGS

Biasing scheme

Sacrifice some of the unit cells and replace with bias components. Let them distribute bias to several rows and columns! (N.b. a row is signal dependent!)

LIU EXPANDING REALITY

281 (514

KÖPINGS

Biasing scheme, use wide-swing mirrors

Use the unit current source as a macro to generate cascode voltage

Switching levels

Saturation should be guaranteed to obtain high impedance

$$V_{DD} - V_{swing} > V_{swt, hi} - V_T$$

 $-V_{swing} > -V_T \Rightarrow V_T > V_{swing}$

There is a risk that we slip out of saturation region

This requirement gives us a maximum swing at the output, ie., a dependency between current and load impedance.

$$I_{max} = \frac{V_{swing}}{R_{load}} \Rightarrow I_{unit} = \frac{V_{swing}}{R_{load} \cdot 2^N} < \frac{V_T}{R_{load} \cdot 2^N}$$

LIU EXPANDING REALITY

Concluding remarks

Mismatch

$$WL = \frac{1}{\sigma_r^2} \cdot \left| A_{\beta}^2 + \frac{4 A_{VT}^2}{V_{eff}^2} \right| \text{ where } \sigma_r = \frac{1}{3} \cdot \sqrt{\frac{2^{2(N - \text{ENOB})} - 1}{6 \cdot 2^N}}$$

Swing

Impedance (example single-transistor source)

$$R_{out} = \frac{g_m}{g_P^2} \sim \frac{L_{src} \cdot \sqrt{(WL)_{sw}}}{I_{unit}^{1.5}} \text{ where } \text{ENOB} \approx 3.2 + 6.6 \cdot \log_{10} \frac{Z_{unit}}{Z_L} - 2 \cdot N \text{ (HD3)}$$

which then is combined with

$$I_{unit} = \frac{\mu C_{ox}}{2} \cdot \frac{W}{L} \cdot V_{eff}^2$$

LIU EXPANDING REALITY

$$I_{unit} < \frac{V_T}{R_L \cdot 2^N}$$

514

Concluding remarks (Omitted parts)

Noise from individual current sources:

$$\dot{i}_{tot}^{2}(f) = 2^{N} \cdot \dot{i}_{unit}^{2}(f) = \frac{4 k T \gamma \cdot 2^{N}}{g_{m}} = \frac{4 k T \gamma \cdot 2^{N}}{\sqrt{2 \alpha I_{unit}}}$$

And quite a few others:

Noise from biasing scheme

PSRR

CMRR

Total maximum area

Power consumption (don't forget the digital parts)

Bandwidth requirements

LIU EXPANDING REALITY

What did we do today?

Oversampling

Sigma-delta modulator and its principles

Case-study current-steering DAC

A general study of the high-speed current-steering DAC

Some design guidance

Understanding impact of impedance and mismatch

LIU EXPANDING REALITY

What will we do next time?

Case-study pipelined ADC

Architecture

Comparator

Sample-and-hold

Wrap-up

LIU EXPANDING REALITY