Lecture 9, ATIK

Data converters 2

What did we do last time?

Data converters

Fundamentals

Overview of different types of data converters

A first glance at oversampling

What will we do today?

Recapture the oversamping data converters
Interpolating/Decimating

Sigma-delta modulator

DACs
Designing a current-steering DAC

Current-steering DAC

All current directed to the output implies high efficiency
No buffer required, implies high speed
Short design time
Current output and no buffer implies now slow rate limitations

$$
I_{o u t}(X)=X \cdot I_{u n i t}=\sum x_{k} \cdot 2^{k-1} \cdot I_{u n i t}
$$

with

$$
X=X_{0}+\Delta X
$$

gives

$$
V_{\text {out }}(X)=Z_{L} \cdot I_{\text {out }}(X)=X \cdot Z_{L} \cdot I_{\text {unit }}=Z_{L} \cdot \sum x_{k} \cdot 2^{k-1} \cdot I_{\text {unit }}
$$

Current-steering DAC, MOS implementation

Switches are implemented by NMOS

Transmission gates normally does not make any impact

Current sources are typically cascoded transistors

C.f. current mirror

Each weight consists of k unit sources in parallel

Current-steering DAC, main design tasks

Designing a good differential pair

Designing accurate current mirrors

Optimization

Trade-offs

Output impedance

Output impedance

Form the differential output

$$
V_{\text {out }}(\Delta X)=\frac{Z_{L} \cdot I_{\text {unit }} \cdot\left(X_{0}+\Delta X\right)}{1+Z_{L} \cdot Y_{\text {unit }} \cdot\left(X_{0}+\Delta X\right)}-\frac{Z_{L} \cdot I_{\text {unit }} \cdot\left(X_{0}-\Delta X\right)}{1+Z_{L} \cdot Y_{\text {unit }} \cdot\left(X_{0}-\Delta X\right)}
$$

Scale and introduce helping variables

$$
\begin{aligned}
& \frac{V_{\text {out }}(\Delta X)}{Z_{L} \cdot I_{\text {unit }} \cdot X_{0}}=\frac{1+\delta x}{1+\eta \cdot(1+\delta x)}-\frac{1-\delta x}{1+\eta \cdot(1-\delta x)} \\
& \frac{V_{\text {out }}(\Delta X)}{Z_{L} \cdot I_{\text {unit }} \cdot X_{0}}=\frac{2 \delta x}{(1+\eta \cdot(1+\delta x)) \cdot(1+\eta \cdot(1-\delta x))}
\end{aligned}
$$

and approximate

$$
\frac{V_{\text {out }}(\Delta X)}{Z_{L} \cdot I_{\text {unit }} \cdot X_{0}}=\frac{2 \delta x /(1+\eta)^{2}}{1-\left(\frac{\eta}{1+\eta}\right)^{2} \cdot \delta x^{2}} \approx \frac{2 \delta x}{(1+\eta)^{2}} \cdot\left(1+\left(\frac{\eta}{1+\eta}\right)^{2} \cdot \delta x^{2}\right)
$$

Output impedance, linearity requirement

Harmonic distortion is the power ratio between fundamental and distortion term:

$$
\mathrm{HD}_{3} \sim \frac{1}{8 \cdot\left|\frac{\eta}{1+\eta}\right|^{4}}=\frac{1}{8}+\frac{1}{8 \cdot \eta^{4}} \approx \frac{1}{8 \cdot \eta^{4}}=\frac{1}{8 \cdot\left(Z_{L} \cdot Y_{\text {unit }} \cdot X_{0}\right)^{4}}=\frac{1}{8} \cdot\left(\frac{Z_{\text {unit }} / Z_{L}}{2^{N-1}}\right)^{4}
$$

For a given output impedance, $Z_{u n i t}$:
With more bits, the harmonic distortion gets worse
With a larger load resistance, the distortion gets worse
Example:

$$
\begin{gathered}
Z_{\text {unit }}=1 \mathrm{M} \Omega, Z_{L}=50 \Omega, N=10 \text { gives } \mathrm{HD}_{3} \approx 55 \mathrm{~dB} \text { such that } \\
\mathrm{ENOB}=\frac{\mathrm{HD}_{3}-1.76}{6.02} \approx 9 \text { bits }
\end{gathered}
$$

Output impedance - what does this mean?

The higher up in frequency, the worse impedance ratio!

Impact of capacitances

Single-transistor has pole/zero at

$$
p_{1}=\frac{g_{d s}}{C}, z_{1}=\frac{g_{m}}{C}
$$

DC

$$
R_{\text {out }}=\frac{g_{m}}{g_{P}^{2}} \sim \frac{L_{s r c} \cdot \sqrt{(W L)_{s w}}}{I_{\text {unit }}^{1.5}}
$$

Low current, (very!!!) long source transistor, and large switches.

The latter not feasible due to speed and the fact that the capacitance increases.
Also here we get a requirement on the current and transistors sizes.

Architectural choices, binary

$$
x_{0}(n T) \quad x_{1}(n T) \quad x_{2}(n T) \quad x_{3}(n T)
$$

$$
I_{\text {out }}(X)=X \cdot I_{\text {unit }}=\sum x_{k} \cdot 2^{k-1} \cdot I_{\text {unit }}
$$

Impact of binary weighted DACs

Mismatch errors will cause differences in weights
Assume errors in the most significant bit (MSB) only in this example.

Architectural choices, Unary/Thermometer

$$
I_{\text {out }}(X)=X \cdot I_{\text {unit }}=\sum y_{k} \cdot 1 \cdot I_{\text {unit }}
$$

Architectural choices, segmented

$$
\begin{gathered}
x_{0}(n T) \quad y_{1}(n T) \quad y_{1}(n T) \quad y_{2}(n T) \\
I_{\text {out }}(X)=X \cdot I_{\text {unit }}=x_{M} \cdot \sum y_{k} \cdot 1 \cdot I_{\text {unit }}+\sum x_{k} \cdot 2^{k-1} \cdot I_{\text {unit }}
\end{gathered}
$$

Impact of mismatch 1

Go back to the binary and consider the square-wave error

$$
\mathrm{HD}_{3}=\frac{P_{s}}{P_{\epsilon, 3}}=\frac{\frac{2^{2 N}}{8} \cdot I_{u n i t}^{2}}{\frac{2^{N+2} \cdot \sigma_{u n i t}^{2}}{9 \pi^{2}}}=2^{N} \cdot \frac{9 \pi^{2}}{32} \cdot \frac{I_{u n i t}^{2}}{\sigma_{u n i t}^{2}} \approx \frac{3 \cdot 2^{N}}{\sigma_{u n i t}^{2} / I_{u n i t}^{2}}=\frac{3 \cdot 2^{N}}{\sigma_{r}^{2}}
$$

All architectures (including quantization noise)

$$
\mathrm{SNDR}=\frac{3 \cdot 2^{2 N-1}}{1+3 \cdot \sigma_{r}^{2} \cdot 2^{N+1}}
$$

There is a trade-off between linearity and noise! Which is worst for your application?

Impact of mismatch 2

Consider the effective number of bits instead:

$$
\mathrm{SNDR}=\frac{3 \cdot 2^{2 N-1}}{1+6 \cdot \sigma_{r}^{2} \cdot 2^{N}} \Rightarrow \mathrm{ENOB}=N-\frac{1}{2} \cdot \log _{2}\left(1+6 \sigma_{r}^{2} \cdot 2^{N}\right)
$$

such that (assume 3 -sigma for higher yield)

$$
\sigma_{r}=\frac{1}{3} \cdot \sqrt{\frac{2^{2(N-\mathrm{ENOB})}-1}{6 \cdot 2^{N}}}
$$

Assume the target is 12-bit performance with a nominal 14-bit DAC:

$$
\sigma_{r} \approx 0.4 \%
$$

Is this a big number?

Impact of mismatch 3

The random, relative error in current is given by

$$
\sigma_{r}^{2}=\sigma^{2}\left(\frac{\Delta I}{I_{u n i t}}\right)=\frac{A_{\beta}^{2}}{W L}+\frac{4 A_{V T}^{2}}{V_{e f f}^{2} \cdot W L} \text { giving } W L=\frac{1}{\sigma_{r}^{2}} \cdot\left|A_{\beta}^{2}+\frac{4 A_{V T}^{2}}{V_{e f f}^{2}}\right|
$$

Example values:

$$
V_{e f f}=0.5 \mathrm{~V}, A_{\beta}=2 \% \mathrm{um}, A_{V T}=7 \mathrm{mV} \text { um, and } \sigma_{r} \approx 0.4 \%
$$

which gives

$$
W L \approx 70 \mathrm{squm}
$$

Impact of mismatch 4

But there are also gradients and intradependencies at hand.

Bad vs better layout:

N/A	0	1	1
2	2	2	2
4	4	4	4
4	4	4	4

4	$\mathrm{~N} / \mathrm{A}$	2	4
1	4	0	2
2	4	4	1
4	2	4	4

Minimizing the cap in the sensitive node 1
Swatch array

Minimizing the cap in the sensitive node 2

Encoded array structure

Switch is turned on if entire row is selected or if row and column are selected.

Minimizing the cap in the sensitive node 2

Array, cont'd

Array-based architecture

Here is where we need the entire row pointer, otherwise this would happen:

Array-based architecture

Redundancy implies we can scramble!

No scrambled structure

The error is strongly signal-dependent (c.f. low number of bits)

Scrambled structure

Scrambling removes some (most) of the signal-dependency
${ }^{1} \mathrm{~N}_{\mathrm{GS}}$ UNIT"

Simulated sinusoids

Simulated sinusoid error

The effect in the frequency domain

Notice, though, that the SNDR is the same!
Improve the SNDR by filtering (already in place due to the oversampling)

Biasing scheme

Biasing scheme

Trade-off between speed and noise supression!

Biasing scheme

Biasing scheme

More branches implies more mismatch and noise. Trade-off!

Biasing scheme

Sacrifice some of the unit cells and replace with bias components. Let them distribute bias to several rows and columns! (N.b. a row is signal dependent!)

Biasing scheme, use wide-swing mirrors

Use the unit current source as a macro to generate cascode voltage

Switching scheme

Overlapping switch signals, such that the switch is never turned off $>$ use some kind of SR latch or so.

Switching must be symmetrical and data independent!
Switches are operating in saturation region!

Switching levels

Saturation should be guaranteed to obtain high impedance

There is a risk that we slip out

$$
-V_{\text {swing }}>-V_{T} \Rightarrow V_{T}>V_{\text {swing }}
$$ of saturation region

This requirement gives us a maximum swing at the output, ie., a dependency

$$
\begin{aligned}
& V_{o u t, l o}-V_{c m}>V_{s w t, h i}-V_{c m}-V_{T} \\
& V_{D D}-V_{s w i n g}>V_{s w t, h i}-V_{T}
\end{aligned}
$$

 between current and load impedance.

$$
I_{\text {max }}=\frac{V_{\text {swing }}}{R_{\text {load }}} \Rightarrow I_{\text {unit }}=\frac{V_{\text {swing }}}{R_{\text {load }} \cdot 2^{N}}<\frac{V_{T}}{R_{\text {load }} \cdot 2^{N}}
$$

Concluding remarks

Mismatch

$$
W L=\frac{1}{\sigma_{r}^{2}} \cdot\left(A_{\beta}^{2}+\frac{4 A_{V T}^{2}}{V_{e f f}^{2}}\right) \text { where } \sigma_{r}=\frac{1}{3} \cdot \sqrt{\frac{2^{2(N-\mathrm{ENOB})}-1}{6 \cdot 2^{N}}}
$$

Swing

$$
I_{u n i t}<\frac{V_{T}}{R_{L} \cdot 2^{N}}
$$

Impedance (example single-transistor source)

$$
R_{\text {out }}=\frac{g_{m}}{g_{P}^{2}} \sim \frac{L_{s r c} \cdot \sqrt{(W L)_{s w}}}{I_{\text {unit }}^{1.5}} \text { where } \mathrm{ENOB} \approx 3.2+6.6 \cdot \log _{10} \frac{Z_{\text {unit }}}{Z_{L}}-2 \cdot N(\mathrm{HD} 3)
$$

which then is combined with

$$
I_{u n i t}=\frac{\mu C_{o x}}{2} \cdot \frac{W}{L} \cdot V_{e f f}^{2}
$$

Concluding remarks (Omitted parts)

Noise from individual current sources:

$$
i_{\text {tot }}^{2}(f)=2^{N} \cdot i_{\text {unit }}^{2}(f)=\frac{4 k T \gamma \cdot 2^{N}}{g_{m}}=\frac{4 k T \gamma \cdot 2^{N}}{\sqrt{2 \alpha I_{\text {unit }}}}
$$

And quite a few others:
Noise from biasing scheme
PSRR
CMRR
Total maximum area
Power consumption (don't forget the digital parts)
Bandwidth requirements

What did we do today?

Oversampling
Sigma-delta modulator and its principles

Case-study current-steering DAC
A general study of the high-speed current-steering DAC

Some design guidance

Understanding impact of impedance and mismatch

What will we do next time?

Case-study pipelined ADC
Architecture

Comparator

Sample-and-hold

Wrap-up

