

Lecture 8, A/D D/A 1

Data converters 1

What did we do last time?

Continuous-time filters

Wrap-up and some more conclusions

Discrete-time filters

Simulation of the continuous-time filters

Discrete-time accumulators

LDI transform

2013-01-14::ANTIK_0025 (P1B)

Bilinear transform

LIU EXPANDING REALITY

What will we do today?

Data converters

Fundamentals

DACs

Overview

ADCs

Overview

Oversampling converters

Overview

2013-01-14::ANTIK 0025 (P1B)

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)

Data converters fundamentals

THE OPINGS UNIVERSITE

DAC

Represents a digital signal with an analog signal To control something To transmit something (a modulated signal)

ADC

Represents an analog signal with a digital signal To measure something To receive something (a modulated signal)

And there are others:

Time-to-digital converters Frequency-to-digital converters etc.

-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Quantization process

If we ramp the input, the error is the deviation from a straight line

How is it defined for a DAC?

With the range 0 to V_{ref} , the stepsize is

$$\Delta = \frac{V_{ref}}{2^N}$$

NGS UNIL

The quantization error is bounded (within range)

Analog and discrete-time integrated circuits (ATIK)

$$Q \in \left| -\frac{\Delta}{2}, \frac{\Delta}{2} \right|$$

2013-01-14::ANTIK_0025

LIU EXPANDING REALITY

Assume signal-independent (not true for a low number of bits)

Quantization assumed to be a stochastic process and white noise, i.e., uniformly distributed in

Analog and discrete-time integrated circuits (ATIK)

$$\left[-\frac{\Delta}{2},\frac{\Delta}{2}\right]$$

Noise power spectral density

White noise has constant spectral density

$$P_q(f) = \frac{\Delta^2}{12 \cdot f_s}$$

Sigma of the probabilistic noise

Noise model

Remember the superfunction

Power spectral density

2013-01-14::ANTIK_0025 (P1B)

A certain bandwidth contains a certain amount of noise

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Peak power assuming centered around the nominal DC level

$$P_{pk} = \left| \frac{V_{ref}}{2} \right|^2$$

Maximum, average sinusoidal power

$$P_{avg} = \frac{1}{2} \cdot \left(\frac{V_{ref}}{2}\right)^2 = \frac{1}{8} \cdot V_{ref}^2 = \frac{P_{pk}}{2}$$

Peak-to-average ratio (PAR) for a sinusoid (crest factor)

$$PAR = \frac{P_{pk}}{P_{avg}} = 2$$
 (1.76 dB)

2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Quantization noise power, signal-to-quantization-noise ratio

$$P_{q,tot} = \sigma^{2} = \frac{\Delta^{2}}{12} \text{ and } \text{SQNR} = \frac{P_{avg}}{P_{q,tot}} = \frac{P_{pk}}{P_{q,tot} \cdot \text{PAR}}$$
$$\text{SQNR} = \frac{\frac{1}{4} \cdot V_{ref}^{2}}{\frac{1}{12} \cdot \left|\frac{V_{ref}}{2^{N}}\right|^{2} \cdot \text{PAR}} = \frac{3 \cdot 2^{2N}}{\text{PAR}}$$

Logarithmic scale

2013-01-14::ANTIK_0025 (P1B)

 $SQNR \approx 6.02 \cdot N + 4.77 - PAR = 6.02 \cdot N + 1.76$ for our sinusoid.

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

D/A conversion as such

Amplitude given by scaled and summed digital bits

$$A_{out}(nT) = \sum_{k=0}^{N-1} w_k(nT) \cdot 2^k$$

The scaling does not necessarily have to be binary:

Analog and discrete-time integrated circuits (ATIK)

Binary

Thermometer

Linear

2013-01-14::ANTIK_0025 (P1B)

Segmented

LIU EXPANDING REALITY

D/A conversion, cont'd

The output is a pulse-amplitude modulated signal (PAM)

 $A_{out}(t) = \sum a(nT) \cdot p(t-nT)$

such that the spectrum is

 $A_{OUT}(j\omega) = A\left(e^{j\omega T}\right) \cdot P(j\omega)$

Commonly, zero-order hold pulses are used as PAM (ideal reconstruction impossible)

Spectrum will be sinc weighted.

-14…ANTIK_0025 (P18

A reconstruction filter is needed to compensate!

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

D/A converter architectures

Current-steering

Summed weighted current sources.

Switched-capacitor (MDAC)

An SC gain circuit with weighted capacitors

Resistor-string

Selects taps out of many and buffers

R-2R

Utilizes current dividers

And many more

2013-01-14::ANTIK_0025 (P1B

LIU EXPANDING REALITY

A/D conversion, sampling

THE OPINGS UNIVERSITE

A/D conversion is a sampling process

 $a(nT) = a(t)|_{t=nT}$

Poission's summation formula

$$A(e^{j\omega T}) = \sum A(j(\omega - 2\pi k) \cdot T)$$

Spectrum might repeat and overlap (folding)!

meet the sampling theorem (theoretically minimizes error)

use an anti-aliasing filter (practically minimizes error)

LIU EXPANDING REALITY

-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

A/D conversion, sampling, cont'd

Tough filter requirements!

2013-01-14::ANTIK_0025 (P1B

Practically, oversampling is required.

This will "separate" the repetitive spectra from each other and some filtering effort can also be moved to digital domain.

LIU EXPANDING REALITY

A/D conversion, mapping

Analog input is mapped to a digital code

A range of the signal input mapped to a unique (?) digital code

Analog and discrete-time integrated circuits (ATIK)

 $D(nT) = \sum_{k=0}^{N-1} w_k(nT) \cdot 2^k$

Other formats

013-01-14::ANTIK_0025 (P1B)

Thermometer, Gray, walking-one

A/D converter architectures

Flash

A set of comparator measures the input and compares it with a set of references.

Sub-ranging

Use a coarse stage to quantize the input. Subtract the input from the reconstructed, quantized result, amplify it and quantize again.

Analog and discrete-time integrated circuits (ATIK)

Pipelined

-14::ANTIK_0025 (P1B

A set of sub-ranging ADCs

LIU EXPANDING REALITY

A/D converter architectures, cont'd

Successive approximation

One sub-ranging ADCs looping in time rather than a straight pipeline.

Analog and discrete-time integrated circuits (ATIK)

And plenty of others

-14::ANTIK_0025 (P1B

Slope, dual-slope, folding, etc.

Oversampling ADCs later today

Data converter errors, DNL

Differential nonlinearity (DNL): Deviations from the desired steps

 $DNL(n) = C_n - C_{n-1} - \Delta$

$$DNL(n) = \frac{C_n - C_{n-1}}{\Delta} - 1 \text{ [LSB]}$$

For full accuracy

 $|\text{DNL}(n)| < 0.5 \text{ LSB } \forall n$

Often, the gain and offset errors are eliminated from the expression.

LIU EXPANDING REALITY

2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Data converter errors, INL

Integral nonlinearity is the deviation from the desired "line"

 $INL(n) = C_n - n \cdot \Delta$

 $\frac{INL(n) = \frac{C_n}{\Delta} - 1}{ILSB}$

For full accuracy

-01-14::ANTIK_0025 (P1B)

 $|INL(n)| < 1 LSB \forall n$

One can also show that the INL is the sum of the DNL

Analog and discrete-time integrated circuits (ATIK)

$$INL(n) = \sum_{k=0}^{n} DNL(k)$$

Typical error measures

Static

INL, DNL, gain, offset

Dynamic (frequency and signal dependent)

Spurious-free dynamic range, SFDR Signal-to-noise-and-distortion ratio, SNDR Intermodulation distortion, IMD

Resolution bandwidth, RBW

-14::ANTIK_0025 (P1B

Effective number of bits, ENOB

Glitches, voltage/current spikes due to timing mismatch

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Typical causes of static errors

Mismatch in reference levels

The effective resistor sizes or currents might vary due to mismatch

Offset in comparators

-14…ANTIK_0025

Any continuous-time amplifier/comparator has a significant offset

Nonlinear effects due to unmatched biasing schemes

A power rail will introduce a gradient which will give a nonlinear transfer

LIU EXPANDING REALITY

Some ways to circumvent the errors

Coding schemes in DACs

Thermometer vs binary

Effects with respect to mismatch

A first glance at a scrambling technique

Analog and discrete-time integrated circuits (ATIK)

Digital error correction in pipelined ADCs

Revisited another lecture

2013-01-14::ANTIK_0025 (P1B

LIU EXPANDING REALITY

Converter trade-offs

To LINTON AGS UNIVERSIT

Conversion speed vs resolution (accuracy)

Figure-of-merit, FOM

 $FOM = \frac{4 k T \cdot f_{bw} \cdot DR}{P}$

High-speed converters consumes a lot of power

High-resolution converters consumes large area

LIC EXPANDING REALITY

2013-01-14::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Attacking the filtering problem

Ideal reconstruction and ideal sampling requires ideal filters

Increase your frequency range

DAC: Interpolation and upsampling

ADC: Decimation and downsampling

Drawbacks

Higher power consumption

More difficult to design (well, ...)

Notice that a DAC can never increase the number of bits!

LIU EXPANDING REALITY

250 of 351

.4::ANTIK_0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Oversampling converters

Noise power over the entire Nyquist range:

 $SQNR = 6.02 \cdot N + 1.76$ [dB]

With oversampling (anti-aliasing/reconstruction filter already there)

SQNR =
$$6.02 \cdot N + 1.76 + 10 \cdot \log_{10} \frac{f_s}{2 \cdot f_{bw}}$$
 [dB]

$$OSR = \frac{f_s}{2 \cdot f_{bw}}$$

-14. ANTIK 0025 (P1R

"For each doubling of the sample frequency, we gain 3 dB"

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY

Oversampling converters

Assume we take a lower order converter to start with

$$\text{ENOB} = \frac{\text{SQNR} - 1.76}{6.02} = N + \frac{10 \cdot \log_{10} \text{OSR}}{6.02}$$

16-bits: Use 12-bit converter, oversample 256 times

For some applications not an impossible scenario

16-bit: Use 1-bit converter, oversample 1073741824 times

Analog and discrete-time integrated circuits (ATIK)

1 Hz would require 1 GHz of sampling frequency ...

... there are more effective ways ...

LIU EXPANDING REALITY

Oversampling converters, cont'd

Since we reduce number of bits, spice it up a bit and "re-increase" complexity:

Create a converter that can also spectrally shape the new added noise

Sigma-delta modulation

HP/LP/BP-filters the added noise

Allpass filters the signal

Very much a filtering problem, but with nonlinear elements

Analog and discrete-time integrated circuits (ATIK)

Regulation loop!

-14::ANTIK_0025 (P1B

Sigma-delta converters, cont'd

$$Y = Q + A \cdot \underbrace{\left(X - B \cdot Y \right)}_{\epsilon} \Rightarrow Y = \frac{Q + A \cdot X}{1 + A \cdot B}$$

Noise and signal transfer functions, NTF/STF

NTF(z) =
$$\frac{1}{1 + A \cdot B}$$
 and STF(z) = $\frac{A}{1 + A \cdot B}$

If A(z) is an integrator and B(z)=1 is unity we get

 $NTF(z) = 1 - z^{-1}$, $STF(z) = z^{-1}$

-01-14::ANTIK_0025 (P1B)

Order of the filters and oversampling determines the SQNR

$$SQNR = 6.02 \cdot N + 1.76 + 10 \cdot (2 \cdot L + 1) \cdot \log_{10} OSR - 10 \cdot \log_{10} \frac{\pi^{-2}}{2L}$$

Analog and discrete-time integrated circuits (ATIK)

254 of 351

21

LIU EXPANDING REAL

Sigma-delta converters, cont'd

First-order modulator and target 16 bits:

12 bits and oversample 16 times.1 bit and oversample 1522 times (c.f. 1 G-times)

Second-order modulator and target 16 bits:

12-bits and oversample 6 times.1-bits and oversample 116 times.

Third-order modulator and target 16 bits:

12 bits and oversample 5 times.1 bits and oversample 40 times.

If too "aggressive", some of the momentum might be lost and filtering problem recreated.

ANTIK 0025 (P1B) Analog and discrete-time integrated circuits (ATIK)

Sigma-delta, audio example

Example:

16 bits (~100 dB)

22 kHz signal bandwidth

Target

As few bits (M) in the coarse quantizer as possible

Choose minimum possible modulator order (L)

Choose minimum possible sample frequency (fs) that maintains a simple analog anti-aliasing/reconstruction filter.

What configurations are possible?

Analog and discrete-time integrated circuits (ATIK)

Sigma-delta, audio example, cont'd

2013-01-14::ANTIK_002<u>5 (P1B)</u>

>>	ant	tikAudioS:	igma	Delta	a									
SNR	=	100.2442	dB,	L =	2,	м =	1,	OSR	= 1	L28	fs	I	5.632	2 MHz.
SNR	=	115.2957	dB,	L =	2,	м =	1,	OSR	= 2	256	fs	Π	11.26	54 MHz
SNR	=	106.2642	dB,	L =	2,	м =	2,	OSR	= 1	L 2 8	fs	I	5.632	2 MHz.
SNR	=	112.2842	dB,	L =	2,	м =	3,	OSR	= 1	L28	fs	Π	5.632	2 MHz.
SNR	=	103.2527	dB,	L =	2,	м =	4,	OSR	= 6	54 :	fs =	= 2	.816	MHz.
SNR	=	112.8346	dB,	L =	3,	м =	1,	OSR	= 6	54 :	fs =	= 2	.816	MHz.
SNR	=	103.8025	dB,	L =	3,	м =	3,	OSR	= 3	32 :	fs =	= 1	.408	MHz.
SNR	=	109.8225	dB,	L =	3,	м =	4,	OSR	= 3	32 :	fs =	= 1	.408	MHz.

LIU EXPANDING REALITY

Analog and discrete-time integrated circuits (ATIK)

What did we do today?

Data converters

Fundamentals

DACs and ADCs

2013-01-14::ANTIK_0025 (P1B)

Some outline of the architecture and properties

Oversampling converters

Basics and the trade-off between different parameters

LIU EXPANDING REALITY

What will we do the next time(s)?

DAC

Design example: the current-steering DAC

ADC

The comparator and its properties

Design example: the pipelined ADC

More circuit-level related stuff

-14…ANTIK_0025 (P1R

Mainly switched-capacitor circuits

Analog and discrete-time integrated circuits (ATIK)

LIU EXPANDING REALITY