Lecture 10, ATIK

Data converters 3

What did we do last time?

A quick glance at sigma-delta modulators
Understanding how the noise is shaped to higher frequencies

DACs
A case study of the current-steering DAC architecture.

Suggesting some common implementation and architectural details

Impact of impedance

Impact of mismatch

Some extras needed

What will we do today?

Case-study pipelined ADC

Architecture and a general overview

Error correction techniques

Sample-and-hold design

Comparator design

Wrap-up

First - the subranging ADC - Basic operation

The converter "zooms" a range and converts the residue.
If flash is used as subconverter, there is only $2^{n}+2^{m}$ comparators

Another analog adder is required as well as a gain circuit, which limits the speed.

Pipelined ADC in one picture

Multiple subranging ADC in series

A series of refinements, zoomins, of the convertible range

Assume same range in each stage

Pipelined ADC - delays

Balance the delays and "cleverly" distribute the clock to avoid race

Pipelined ADC - sensitive towards errors

Any misinterpreted level quickly diverges and never recovers!

Overlap can be digitally corrected (without training!)

Pipelined ADC - error correction

Increase the number of stages and reduce overlap, i.e., decrease the scaling factor, 2^{n}. Now, less likely to diverge and is able to recover.

More stages are required, but typically worth it

Pipelined ADC - error correction cont'd

Trivial circuitry to retrieve the most likely code!

PADC: Taking a look at the subcomponents

Sample-and-hold

Sub-ADC

Sub-DAC

Adder

Multiplier

Sample-and-hold process

The input should be sampled and held to reduce the jitter in the subcomponents.

Inherent delays will otherwise cause mismatch.

Jitter (interdelay) is a very strong limitation on obtainable performance

S/H at input of ADC must have full accuracy !!!

Sample-and-hold, 1st-level implementation

Passive sampling

Limitations
Clock-feedthrough
Charge-injection
On-resistance
Distortion
Jitter
Noise

Sample-and-hold charge injection

Channel charge injection

$$
\Delta V_{2}(n T) \sim \frac{W L \cdot C_{o x} \cdot\left(V_{\phi}-V_{T}-V_{2}(n T)\right)}{C_{H}}
$$

Large capacitor is good!

Force the delta voltage to always be lower
 than the LSB voltage:

$$
V_{r e f} \cdot \frac{W \cdot L \cdot C_{o x}}{2 C_{H}}<\frac{\Delta}{2} \Rightarrow W \cdot L<\frac{C_{H}}{C_{o x} \cdot 2^{N+1}}
$$

Sample-and-hold clock feedthrough

Clock feed-through

$$
\Delta V_{2}(n T)=\frac{C_{o l}}{C_{H}} \cdot\left(V_{\phi}-V_{2}(n T)\right)
$$

such that

$$
V_{2}(n T)=V_{1}(n T) \cdot\left(1+\frac{C_{o l}}{C_{H}}\right)-\frac{C_{o l}}{C_{H}} \cdot V_{T}
$$

Large capacitor is good!

Force the delta voltage to always be lower than the LSB voltage:

$$
V_{r e f} \cdot \frac{C_{o l}}{C_{H}}<\frac{\Delta}{2} \Rightarrow C_{o l}<\frac{C_{H}}{2^{N+1}}
$$

Sample-and-hold bandwidth

Non-zero resistance

$$
G_{o n}=\alpha \cdot\left(V_{p h i}-V_{T}-V_{1}(n T)\right)
$$

Bandwidth limitation, but also distortion due to signal-dependent resistance

Large capacitor is bad!

For a full-scale step at the input, we should settle within 1 LSB accuracy, i.e.

$$
V_{r e f} \cdot e^{\frac{-G_{o n}}{2 C_{H} \cdot f_{s}}}<\frac{\Delta}{2} \Rightarrow-\frac{G_{o n}}{2 C_{H} \cdot f_{s}}<-\ln 2^{N+1} \Rightarrow R_{o n} \ll \frac{0.5 \cdot \ln 2}{C_{H} \cdot f_{s} \cdot(N+1)}
$$

Noise

Given by the bandwidth and the brickwall pole

$$
v_{n, t o t}^{2}=\frac{k T}{C_{H}}
$$

Large capacitor is good!

Quantization noise should be larger than noise, i.e.

$$
v_{n, \text { tot }}^{2}<\frac{\Delta^{2}}{12} \Rightarrow C_{H}>12 k T \cdot \frac{2^{2 N}}{V_{\text {ref }}^{2}}
$$

Sub-ADC

Most likely a flash ADC
Fastest and best choice for low number of bits

Use a resistive divider to create reference voltages

Offset and matching of resistors must match the accuracy of the active pipeline stage

Mismatch information will give requirements on transistors and resistor sizes

Relative error is inversely dependent on the area

Sub-DAC

Reuse the resistive divider for the sub DAC!

Notice that the picture does not display the correct decoding of the $t i$ bits for control of the DAC switches. (A thermometer-to-walking-one converter consisting of a bank of XOR gates is needed.)

Adder/gain

A rather compact design can be obtained reusing and combining difference active and passive components.

Resistance is futile...

Why?

Noise and OTA design

Go for capacitor-based circuits

Switched-capacitor comparators in the sub ADC

Switched-capacitor DAC

Switched-capacitor summation and multiplier

Active S/H with offset cancellation

Uses bottom-plate sampling to minimize charge feedthrough

$$
v_{2}=v_{1}-v_{o s}, \text { i.e., offset sensitive, but output is buffered and isolated. }
$$

Comparators

A comparator is not an OP! Consider speed vs. gain

$$
A(s)=\frac{A_{0}}{1+s / p_{1}} \Rightarrow \tau=\frac{1}{p_{1}} \approx \frac{A_{0}}{\omega_{u g}}
$$

vs three-stage example

$$
\begin{aligned}
& A^{\prime}(s)=\frac{A_{0}^{\prime 3}}{\left(1+s / p_{1}^{\prime}\right)^{3}} \Rightarrow \tau^{\prime}=3 \cdot \frac{1}{p_{1}^{\prime}}=\frac{3 A_{0}^{\prime}}{\omega_{u g}} \text {, with } A_{0}^{\prime}=A_{0}^{1 / 3} \\
& \tau^{\prime}=\tau \cdot \frac{3 A_{0}^{\prime}}{A_{0}}=\tau \cdot \frac{3}{A_{0}^{2 / 3}}
\end{aligned}
$$

(Phase margin is not necessarily an issue!)

Comparators, speed vs resolution 1

Characteristic resolution parameter, c_r, is the smallest level that can toggle the output to reliable levels

$$
V_{O H}-V_{O L}=A_{0} \cdot\left(V_{I H}-V_{I L}\right) \Rightarrow c_{r}=\frac{V_{O H}-V_{O L}}{A_{0}}
$$

Assume a first-order system and apply an input step:

$$
v_{\text {out }}(t)=V_{O L}+A_{0} \cdot v_{\text {step }} \cdot\left(1-e^{-\omega_{c} t}\right)
$$

Apply the smallest possible signal

$$
v_{\text {out }}(t)=V_{O L}+A_{0} \cdot c_{r} \cdot\left(1-e^{-\omega_{c} t}\right)=V_{O L}+\left(V_{O H}-V_{O L}\right) \cdot\left(1-e^{-\omega_{c} t}\right)
$$

Check when we pass the mid-level at the output

$$
v_{\text {out }}(\tau)=V_{O L}+\frac{V_{O H}-V_{O L}}{2}=V_{O L}+\left(V_{O H}-V_{O L}\right) \cdot\left(1-e^{-\omega_{c} \tau}\right) \Rightarrow 0.5=1-e^{-\omega_{c} \tau} \Rightarrow \tau=\frac{\ln 2}{\omega_{c}}
$$

Comparators, speed vs resolution 2

Assume now that the input step is K times larger:

$$
\begin{gathered}
v_{\text {out }}\left(\tau^{\prime}\right)=V_{O L}+\frac{V_{O H}-V_{O L}}{2}=V_{O L}+\left(V_{O H}-V_{O L}\right) \cdot K \cdot\left(1-e^{-\omega_{c} \tau^{\prime}}\right) \Rightarrow \\
0.5=K \cdot\left(1-e^{-\omega_{c} \tau^{\prime}}\right) \Rightarrow \tau^{\prime}=\frac{1}{\omega_{c}} \cdot \ln \frac{2 K}{2 K-1} \Rightarrow \tau^{\prime}=\tau \cdot \frac{\ln \frac{2 K}{2 K-1}}{\ln 2} \approx \frac{\tau}{2 K \cdot \ln 2}
\end{gathered}
$$

If K goes towards infinity, the delay goes towards 0 .

The more accuracy, the lower sample frequency!

Comparators, offset "cancellation" 1

The sub ADC takes sampled input and reference at two different phases:

First reference is selected

$$
q\left(\phi_{r e f}\right)=C \cdot\left(V_{r e f, k}-V_{2}\left(\phi_{r e f}\right)\right)
$$

where

$$
V_{2}\left(\phi_{r e f}\right)=v_{o s} \cdot \frac{A}{1+A}
$$

Then signal is selected and charge must be preserved

$$
\begin{gathered}
\left.q\left(\phi_{i n}\right)=C \cdot \left\lvert\, v_{i n}\left(\phi_{i n}\right)-v_{o s}+\frac{V_{2}\left(\phi_{i n}\right)}{A}\right.\right)=q\left(\phi_{r e f}\right)=C \cdot\left(V_{r e f, k}-v_{o s} \cdot \frac{A}{1+A}\right) \\
V_{2}\left(\phi_{i n}\right)=-A \cdot\left(v_{i n}\left(\phi_{i n}\right)-V_{r e f, k}\right)+v_{o s} \cdot \frac{A}{1+A} \text { (no amplified offset) }
\end{gathered}
$$

Comparators, offset cancellation in OTA

Correlated double sampling
First phase

$$
\begin{aligned}
& q_{1}=C_{1} \cdot\left(v_{1}-v_{o s}\right) \\
& q_{2}=C_{2} \cdot\left(0-v_{o s}\right)
\end{aligned}
$$

Second phase

$$
\begin{aligned}
& q_{1}=-C_{1} \cdot v_{o s} \\
& q_{2}=C_{2} \cdot\left(v_{2}-v_{o s}\right)
\end{aligned}
$$

Total charge is preserved

$$
C_{1} \cdot\left(v_{1}-v_{o s}\right)-C_{2} \cdot v_{o s}=-C_{1} \cdot v_{o s}+C_{2} \cdot\left(v_{2}-v_{o s}\right) \Rightarrow \frac{v_{2}}{v_{1}}=\frac{C_{1}}{C_{2}} \text { [OFFSET CANCELLED] }
$$

Comparators, structure

Use (low-gain) preamplifiers and then high-speed positive-feedback latch, which has infinite (DC) gain (time/gain trade-off)

MDAC, concept

Combines the sub-DAC, adder, gain, and sample-and-hold

MDAC, SC implementation

Bits b_{i} from the ADC (in the 5-bit example below they are binary)

Left as exercise to prove operation ...

Pipelined ADC, conclusions

Compact SC solution

What did we do today?

Looked at a pipelined ADC as design example Suggested a compact, resistive structure

Described an error correction technique

Outlined some examples on limiting factors on performance

Outlined an offset cancellation technique for comparators

Outlined a switched-capacitor architecture

What will we do next time?

Exam ...

Download pages

