Lecture 9, ANIK

Data converters 1

What did we do last time?

Noise and distortion
Understanding the simplest circuit noise

Understanding some of the sources of distortion

What will we do today?

Data converter fundamentals

DACs

ADCs

Transfer characteristics

Error measures

Typical architectures

Data converters fundamentals

DAC
Represents a digital signal with an analog signal
To control something
To transmit something (a modulated signal)
ADC
Represents an analog signal with a digital signal
To measure something
To receive something (a modulated signal)

And there are others:
Time-to-digital converters
Frequency-to-digital converters
etc.

The quantization process

Distinct levels can be detected (ADC)/represented (DAC)
The quantization error is the deviation from the straight line

Range is 0 to $V_{\text {ref }}$, which gives stepsize

$$
\Delta=\frac{V_{r e f}}{2^{N}}
$$

The quantization error is bounded (as long as we do not saturate):

$$
Q \in\left\{-\frac{\Delta}{2}, \frac{\Delta}{2}\right\}
$$

Quantization process, cont'd

Assume signal-independent (not true for a low number of bits)
Quantization assumed to be a stochastic process
Assume white noise, uniformly distributed in $\{-\Delta / 2, \Delta / 2\}$

Noise power spectral density

Quantization process, cont'd

Sigma of the probabilistic noise
Noise model
Remember the superfunction

Power spectral density
A certain bandwidth contains a certain amount of noise

Quantization process, cont'd

Peak power assuming centered around the nominal DC level

$$
P_{p k}=\left(\frac{V_{r e f}}{2}\right)^{2}
$$

Maximum, average sinusoidal power

$$
P_{a v g}=\frac{1}{2} \cdot\left(\frac{V_{r e f}}{2}\right)^{2}=\frac{1}{8} \cdot V_{r e f}^{2}=\frac{P_{p k}}{2}
$$

Peak-to-average ratio (PAR) for a sinusoid

$$
\mathrm{PAR}=\frac{P_{p k}}{P_{a v g}}=2(1.76 \mathrm{~dB})
$$

Quantization process, cont'd

Noise power given by the sigma: $P_{q, t o t}=\sigma^{2}=\frac{\Delta^{2}}{12}$
Signal-to-quantization-noise ratio: $\mathrm{SQNR}=\frac{P_{a v g}}{P_{q, t o t}}=\frac{P_{p k}}{P_{q, t o t} \cdot \operatorname{PAR}}$
With values inserted

$$
\mathrm{SQNR}=\frac{\frac{1}{4} \cdot V_{r e f}^{2}}{\frac{1}{12} \cdot\left(\frac{V_{r e f}}{2^{N}}\right)^{2} \cdot \mathrm{PAR}}=\frac{3 \cdot 2^{2 N}}{\mathrm{PAR}}
$$

In logarithmic scale

$$
\mathrm{SQNR} \approx 6.02 \cdot N+4.77-\mathrm{PAR}=6.02 \cdot N+1.76 \text { for our sinusoid. }
$$

D/A conversion as such

Amplitude is generated by scaling the digital bits and summing them

$$
A_{\text {out }}(n T)=\sum_{k=0}^{N-1} w_{k}(n T) \cdot 2^{k}
$$

The scaling does not necessarily have to be binary:
Binary
Thermometer
Linear
Segmented

D/A conversion, cont'd

The output is a pulse-amplitude modulated signal (PAM)

$$
A_{\text {out }}(t)=\sum a(n T) \cdot p(t-n T)
$$

such that the spectrum is

$$
A_{\text {OUT }}(j \omega)=A\left(e^{j \omega T}\right) \cdot P(j \omega)
$$

A common pulse is the zero-order hold, since ideal reconstruction is impossible. In the frequency domain the output will be sinc-weighted:

A reconstruction filter is needed to compensate!

D/A converter architectures

Current-steering

Outputs summed by weighted current sources. KCL simplifies this

Switched-capacitor (MDAC)
An SC gain circuit with weighted capacitors, c.f. the multiple input OP gain circuit

Resistor-string
Select a certain tap out of many and buffer to output

R-2R
Utilizes current dividers
And many more

Oversampling DACs, etc.

A/D conversion

A/D conversion is essentially a sampling process

$$
a(n T)=\left.a(t)\right|_{t=n T}
$$

Poission's summation formula

$$
A\left(e^{j \omega T}\right)=\sum A(j(\omega-2 \pi k) \cdot T)
$$

Spectrum might repeat and overlap itself!

A/D conversion, cont'd

To avoid folding:
meet the sampling theorem (theoretically minimizes error)
use an anti-aliasing filter (practically minimizes error)

Practically, an amount of oversampling is required to meet the tough filter requirements

Analog input is mapped to a digital code
A range of the input mapped to a unique digital code

$$
D(n T)=\sum_{k=0}^{N-1} w_{k}(n T) \cdot 2^{k}
$$

A/D converter architectures

Flash

A set of comparator measures the input and compares it with a set of references.

Sub-ranging
Use a coarse stage to quantize the input. Subtract the input from the reconstructed, quantized result, amplify it and quantize again.

Pipelined
A set of sub-ranging ADCs

Successive approximation
One sub-ranging ADCs looping in time rather than a straight pipeline.
And plenty of others
Slope, dual-slope, folding, Oversampling ADCs later today

Data converter errors, DNL

Differential nonlinearity is the deviations from the desired steps

$$
\operatorname{DNL}(n)=C_{n}-C_{n-1}-\Delta
$$

or

$$
\operatorname{DNL}(n)=\frac{C_{n}-C_{n-1}}{\Delta}-1[\mathrm{LSB}]
$$

For full accuracy
$|\operatorname{DNL}(n)|<0.5 \mathrm{LSB} \quad \forall n$

Often, the gain and offset errors are eliminated from the expression.

Data converter errors, INL

Integral nonlinearity is the deviation from the desired "line"

$$
\operatorname{INL}(n)=C_{n}-n \cdot \Delta \text { or } \operatorname{INL}(n)=\frac{C_{n}}{\Delta}-1[\mathrm{LSB}]
$$

For full accuracy

$$
|\operatorname{INL}(n)|<1 \text { LSB } \forall n
$$

One can also show that the INL is the sum of the DNL

Data converter errors, relations

Static measures
INL, DNL
Gain, offset

Dynamic measures
Spurious-free dynamic range, SFDR
Signal-to-noise-and-distortion ratio, SNDR
Intermodulation distortion, IMD
Resolution bandwidth
Effective number of bits
Glitches

Linearity errors are signal dependent!

Typical causes of static errors

Mismatch in reference levels
The effective resistor sizes or currents might vary due to mismatch

Offset in comparators
Any "modern" continuous-time amplifier has signficant offset

Nonlinear effects due to unmatched biasing

A power rail will introduce a gradient which will give a nonlinear transfer

Ways to circumvent the errors

Coding schemes in DACs
Thermometer vs binary
Effects with respect to mismatch
A first glance at a scrambling technique

Digital error correction in pipelined ADCs
Revisited Iater

Converter trade-offs, speed vs resolution

A common figure-of-merit:

$$
\mathrm{FOM}=\frac{4 k T \cdot f_{b w} \cdot \mathrm{DR}}{P}
$$

Some conclusions from this formula High-speed converters cost power

High-resolution converters cost area

What did we do today?

Data converter fundamentals

DACs

ADCs

Transfer characteristics

Error measures

Typical architectures

What will we do next time?

Data converter
Sigma-delta modulators

Some extras

Wrap-up

