

Lecture 9, ANIK

Data converters 1

har colui, seno

www.liu.sc/onlin

skovinch vettsteknih 2002 urrätt endlig vett EG/EU.vett crett, chalestands/ Evsek vätt s afterwards

Distaminasih

What did we do last time?

Noise and distortion

Understanding the simplest circuit noise

Understanding some of the sources of distortion

LIU EXPANDING REALITY

2012-02-20::ANTIK_0025 (P9A)

Analog (and discrete-time) integrated circuits

What will we do today?

Data converter fundamentals

DACs

ADCs

2012-02-20::ANTIK 0025 (P9A)

Transfer characteristics

Error measures

Typical architectures

LIU EXPANDING REALITY

Data converters fundamentals

DAC

Represents a digital signal with an analog signal To control something To transmit something (a modulated signal)

ADC

Represents an analog signal with a digital signal To measure something To receive something (a modulated signal)

And there are others:

.20…ANTIK_0025 (P9

Time-to-digital converters Frequency-to-digital converters etc.

The quantization process

Distinct levels can be detected (ADC)/represented (DAC)

The quantization error is the deviation from the straight line

Range is 0 to V_{ref} , which gives stepsize

 $\Delta = \frac{V_{ref}}{2^N}$

The quantization error is bounded (as long as we do not saturate):

$$Q \in \left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$$

_0025

TT O LINGS UNIVERSITET O LAND

LIU EXPANDING REALITY

Assume signal-independent (not true for a low number of bits)

Quantization assumed to be a stochastic process Assume white noise, uniformly distributed in $\left[-\Delta/2, \Delta/2\right]$

Noise power spectral density

Sigma of the probabilistic noise

Noise model

Remember the superfunction

Power spectral density

2012-02-20::ANTIK_0025 (P9A

A certain bandwidth contains a certain amount of noise

LIU EXPANDING REALITY

Peak power assuming centered around the nominal DC level

 $P_{pk} = \left| \frac{V_{ref}}{2} \right|^2$

Maximum, average sinusoidal power

$$P_{avg} = \frac{1}{2} \cdot \left(\frac{V_{ref}}{2}\right)^2 = \frac{1}{8} \cdot V_{ref}^2 = \frac{P_{pk}}{2}$$

Peak-to-average ratio (PAR) for a sinusoid

2012-02-20::ANTIK_0025 (P9)

$$\frac{PAR = \frac{P_{pk}}{P_{avg}} = 2}{P_{avg}} (1.76 \text{ dB})$$

LIU EXPANDING REALITY

To LINGS UNIVERSITY OF THE STATES

Noise power given by the sigma: $P_{q,tot} = \sigma^2 = \frac{\Delta^2}{12}$

Signal-to-quantization-noise ratio: $\frac{\text{SQNR} = \frac{P_{avg}}{P_{q,tot}} = \frac{P_{pk}}{P_{q,tot}} \cdot \frac{P_{pk}}{P_{q,tot}}}$

With values inserted

$$SQNR = \frac{\frac{1}{4} \cdot V_{ref}^2}{\frac{1}{12} \cdot \left|\frac{V_{ref}}{2^N}\right|^2 \cdot PAR} = \frac{3 \cdot 2^{2N}}{PAR}$$

In logarithmic scale

-20…ANTIK_0025 (P9

SQNR $\approx 6.02 \cdot N + 4.77 - PAR = 6.02 \cdot N + 1.76$ for our sinusoid.

D/A conversion as such

Amplitude is generated by scaling the digital bits and summing them

 $A_{out}(nT) = \sum_{k=0}^{N-1} w_k(nT) \cdot 2^k$

The scaling does not necessarily have to be binary:

Binary Thermometer Linear Segmented

2012-02-20::ANTIK_0025 (P9A

LIU EXPANDING REALITY

D/A conversion, cont'd

The output is a pulse-amplitude modulated signal (PAM)

$$A_{out}(t) = \sum a(nT) \cdot p(t-nT)$$

such that the spectrum is

$$A_{OUT}(j\omega) = A \left(e^{j\omega T} \right) \cdot P(j\omega)$$

A common pulse is the zero-order hold, since ideal reconstruction is impossible. In the frequency domain the output will be sinc-weighted:

2-02-20::ANTIK_0025 (P9A) Analog (and discrete-time) integrated circuits

D/A converter architectures

Current-steering

Outputs summed by weighted current sources. KCL simplifies this

Switched-capacitor (MDAC)

An SC gain circuit with weighted capacitors, c.f. the multiple input OP gain circuit

Resistor-string

Select a certain tap out of many and buffer to output

R-2R

Utilizes current dividers

And many more

2012-02-20::ANTIK_0025 (P9A)

Oversampling DACs, etc.

LIU EXPANDING REALITY

A/D conversion

A/D conversion is essentially a sampling process

 $a(nT) = a(t)|_{t=nT}$

Poission's summation formula

 $A(e^{j\omega T}) = \sum A(j(\omega - 2\pi k) \cdot T)$

Spectrum might repeat and overlap itself!

LIU EXPANDING REALITY

2012-02-20::ANTIK 0025 (P9A)

Analog (and discrete-time) integrated circuits

A/D conversion, cont'd

To avoid folding:

meet the sampling theorem (theoretically minimizes error) use an anti-aliasing filter (practically minimizes error)

Practically, an amount of oversampling is required to meet the tough filter requirements

Analog input is mapped to a digital code

_0025

A range of the input mapped to a unique digital code

$$D(nT) = \sum_{k=0}^{N-1} w_k(nT) \cdot 2^k$$

A/D converter architectures

Flash

A set of comparator measures the input and compares it with a set of references.

Sub-ranging

Use a coarse stage to quantize the input. Subtract the input from the reconstructed, quantized result, amplify it and quantize again.

Pipelined

A set of sub-ranging ADCs

Successive approximation

One sub-ranging ADCs looping in time rather than a straight pipeline.

And plenty of others

Slope, dual-slope, folding, Oversampling ADCs later today

Data converter errors, DNL

THE OPTINGS UNIVERSITET

Differential nonlinearity is the deviations from the desired steps

$$DNL(n) = C_n - C_{n-1} - \Delta$$

or

$$DNL(n) = \frac{C_n - C_{n-1}}{\Delta} - 1$$
 [LSB]

For full accuracy

2012-02-20::ANTIK_0025 (P9A

 $|\text{DNL}(n)| < 0.5 \text{ LSB } \forall n$

Often, the gain and offset errors are eliminated from the expression.

Analog (and discrete-time) integrated circuits

Data converter errors, INL

Integral nonlinearity is the deviation from the desired "line"

Analog (and discrete-time) integrated circuits

$$\text{INL}(n) = C_n - n \cdot \Delta$$
 or $\text{INL}(n) = \frac{C_n}{\Delta} - 1$ [LSB]

For full accuracy

2012-02-20::ANTIK_0025 (P9)

 $|INL(n)| < 1 LSB \forall n$

One can also show that the INL is the sum of the DNL

Data converter errors, relations

Static measures

INL, DNL Gain, offset

Dynamic measures

-02-20::ANTIK_0025 (P9A

Spurious-free dynamic range, SFDR Signal-to-noise-and-distortion ratio, SNDR Intermodulation distortion, IMD Resolution bandwidth Effective number of bits Glitches

Linearity errors are signal dependent!

Typical causes of static errors

Mismatch in reference levels

The effective resistor sizes or currents might vary due to mismatch

Offset in comparators

2-02-20…ANTIK_0025 (P9

Any "modern" continuous-time amplifier has signficant offset

Nonlinear effects due to unmatched biasing

A power rail will introduce a gradient which will give a nonlinear transfer

LIU EXPANDING REALITY

Ways to circumvent the errors

Coding schemes in DACs

2012-02-20::ANTIK_0025 (P9A

Thermometer vs binary Effects with respect to mismatch A first glance at a scrambling technique

Digital error correction in pipelined ADCs Revisited later

Analog (and discrete-time) integrated circuits

520 of 530

Integrating

Converter trade-offs, speed vs resolution

A common figure-of-merit:

2012-02-20::ANTIK_0025 (P9A

 $FOM = \frac{4 k T \cdot f_{bw} \cdot DR}{P}$

Some conclusions from this formula

High-speed converters cost power

High-resolution converters cost area

Analog (and discrete-time) integrated circuits

Speed

Flash

521 of 530

What did we do today?

Data converter fundamentals

DACs

ADCs

2012-02-20::ANTIK 0025 (P9A)

Transfer characteristics

Error measures

Typical architectures

LIU EXPANDING REALITY

What will we do next time?

Data converter

Sigma-delta modulators

Some extras

2012-02-20::ANTIK_0025 (P9A)

Wrap-up

Analog (and discrete-time) integrated circuits

523 of 530