Lecture 8, ANIK

Noise and distortion

What did we do last time?

Operational amplifiers

Circuit-level aspects

Simulation aspects

Some terminology

What will we do today?

Some left-overs

Noise

Circuit noise
Thermal noise
Flicker noise

Distortion
What sets the (non)linearity in our CMOS devices?

Other practical concerns wrt. current

Feedback with resistors
An OP given with a certain current drive capability.

What is the maximum swing?

What is the DC level?

Other practical concerns wrt. bandwidth

Various unwanted effects
Limited gain

Offset error

Bandwidth

Noise

Any circuit has noise and you as a designer have to reduce it or minimize the impact of it.
"A disturbance, especially a random and persistent disturbance, that obscures or reduces the clarity of a signal."

Consequences

We need to use stochastic variables and power spectral densities, expectation values, etc.
We need to make certain assumptions (models) of our noise sources in order to calculate

Superfunction and spectral densitites

Frequency domain

Spectral density (PSD)

Superfunction

$$
S_{0}(f)=\sum\left|A_{i}(f)\right|^{2} \cdot S_{i}(f)
$$

Total noise

$$
\begin{aligned}
& V_{\text {tot }}^{2}=\int v_{n}^{2}(f) d f \\
& V_{\text {tot }}^{2}=v_{n}^{2}(0) \cdot \frac{p_{1}}{4}
\end{aligned}
$$

Thermal noise, white noise

Resistor

$$
v_{n}^{2}=4 k T R \text { or } i_{n}^{2}=\frac{v_{n}^{2}}{R^{2}}=\frac{4 k T}{R}
$$

Transistor

$$
v_{g}^{2}=\frac{4 k T \gamma}{g_{m}} \text { or } i_{d}^{2}=v_{g}^{2} \cdot g_{m}^{2}=4 k T \gamma g_{m}
$$

Flicker noise, 1/f-noise, pink noise

Resistor

$$
v_{n}^{2}=\frac{v_{\text {bias }}^{2} \cdot k}{W L \cdot f} \text { and } i_{n}^{2}=R^{2} \cdot v_{n}^{2}
$$

Transistor

$$
v_{g}^{2}=\frac{K_{F}}{C_{o x}^{2} \cdot W L} \cdot \frac{1}{f} \text { and } i_{d}^{2}=g_{m}^{2} \cdot v_{n}^{2}
$$

Noise compiled in one example

Common-source with noisy transistors

Noise compiled in one example, cont'd

Potentially reorder the sources for convient calculations

Notice the use of transconductance from voltage to current.

Noise compiled in one example, cont'd

Equivalent small-signal schematics (ESSS)

Noise compiled in one example, cont'd

The general transfer function to the output is given by

$$
V_{n, \text { out }}^{2}(f)=\frac{v_{g n}^{2}(f) \cdot\left|G_{n}(f)\right|^{2}+v_{g p}^{2}(f) \cdot\left|G_{p}(f)\right|^{2}}{\left|s C_{L}+g_{p}+g_{n}\right|^{2}}
$$

Insert the values

$$
V_{n, \text { out }}^{2}(f)=4 k T \gamma \frac{\frac{g_{m n}^{2}}{g_{m n}}+\frac{g_{m p}^{2}}{g_{m p}}}{\left(g_{p}+g_{n}\right)^{2} \cdot\left|1+\frac{\frac{s}{g_{p}+g_{n}}}{C_{L}}\right|}=\left.4 k T \gamma \frac{\frac{g_{m n}+g_{m p}}{\left(g_{p}+g_{n}\right)^{2}}}{\left\lvert\, \frac{s}{g_{p}+g_{n}}\right.}\right|^{2}
$$

Noise compiled in one example, cont'd

Use the brickwall approach

$$
V_{n, \text { tot }}^{2}=\int V_{n, \text { out }}^{2}(f)=V_{n, \text { out }}^{2}(0) \cdot \frac{p_{1}}{4}
$$

Insert the expressions

$$
V_{n, t o t}^{2}=4 k T \gamma \frac{g_{m n}+g_{m p}}{\left(g_{p}+g_{n}\right)^{2}} \cdot \frac{g_{p}+g_{n}}{4 C_{L}}=\frac{k T \gamma}{C_{L}} \cdot \frac{g_{m n}+g_{m p}}{g_{p}+g_{n}}
$$

and conclude

$$
V_{n, t o t}^{2}=\frac{k T \gamma}{C_{L}} \cdot A_{0} \cdot\left(1+\frac{g_{m p}}{g_{m n}}\right)
$$

Input-referred noise

Revert the output noise back to the input:

$$
V_{n, \text { in }}^{2}(f)=\frac{V_{n, \text { out }}^{2}(f)}{\left|A_{\text {in }}(f)\right|^{2}}
$$

The common-source example

Input-referred noise

$$
\left.V_{n, i n}^{2}(f)=\left|4 k T \gamma \frac{\frac{\left(g_{m n}+g_{m p}\right)}{\left(g_{p}+g_{n}\right)^{2}}}{\left|1+\frac{s}{\frac{\left(g_{p}+g_{n}\right)}{C_{L}}}\right|^{2}} \cdot\right| \frac{\left|1+\frac{s}{\frac{\left(g_{p}+g_{n}\right)}{C_{L}}}\right|^{2}}{\frac{g_{m n}^{2}}{\left(g_{p}+g_{n}\right)^{2}}} \right\rvert\,=\frac{4 k T \gamma}{g_{m n}} \cdot\left(\left.1+\frac{g_{m p}}{g_{m n}} \right\rvert\,\right.
$$

What does this mean?

Bias transistor should be made with low transconductance!
Visible from the formula

Gain transistors should be made with high transconductance!
Visible from the formula

Gain should be distributed between multiple stages, c.f., Friis.!
Left as an exercise

Noise in operational amplifiers

CMOS opamps can be assumed to have an input referred noise source on one of the inputs.

Input referred noise can be calculated according to previous principles and will be given by a spectral density

Noise in OP, example

Assume noisy resistors and noisy opamp.

$$
\frac{V_{2}(s)}{V_{1}(s)}=\frac{-1}{1+s R C}
$$

And the noise sources
Opamp noise

$$
\frac{V_{2}(s)}{V_{n}(s)}=1+\frac{1}{1+s R C}
$$

Resistor noise

$$
\frac{V_{2}(s)}{V_{r 2}(s)}=\frac{1}{1+s R C} \text { and } \frac{V_{2}(s)}{V_{r 1}(s)}=\frac{-1}{1+s R C}
$$

Superposition and superfunction yields the result.

Distortion

No circuit is fully linear... in reality something like

$$
Y=\alpha_{0}+\alpha_{1} \cdot X+\alpha_{2} \cdot X^{2}+\alpha_{3} \cdot X^{3}+\alpha_{4} \cdot X^{4}+\ldots
$$

Example

$$
\begin{aligned}
& X=\sin \omega t \text { and } \alpha_{1}=1, \alpha_{2}=0.01 \\
& Y=\sin \omega t+\alpha_{2} \cdot \sin ^{2} \omega t=\sin \omega t+\alpha_{2} \cdot \frac{1-\cos 2 \omega t}{2}
\end{aligned}
$$

which results in a DC shift, and a distortion term:

$$
Y=\underbrace{\frac{\alpha_{2}}{2}}_{\text {DC shift }}+\underbrace{\sin \omega t}_{\text {desired }}-\underbrace{\frac{\alpha_{2}}{2} \cdot \cos 2 \omega t}_{\text {distortion }}
$$

Distortion

Frequency-domain measures
Spurious-free dynamic range, SFDR
Harmonic distortion, HD
Signal-to-noise-and-distortion ratio, SNDR

Amplitude domain measures
Compression
Clipping
Gain-boosting
Offset

Frequency domain measures

Distortion, fully differential circuits

Assume distortion is identical in both branches

$$
\begin{aligned}
& Y_{p}=\alpha_{0}+\alpha_{1} \cdot X_{p}+\alpha_{2} \cdot X_{p}^{2}+\alpha_{3} \cdot X_{p}^{3}+\alpha_{4} \cdot X_{p}^{4}+\ldots \text { and } \\
& Y_{n}=\alpha_{0}+\alpha_{1} \cdot X_{n}+\alpha_{2} \cdot X_{n}^{2}+\alpha_{3} \cdot X_{n}^{3}+\alpha_{4} \cdot X_{n}^{4}+\ldots
\end{aligned}
$$

Difference:

$$
\Delta Y=Y_{p}-Y_{n}=\left(\alpha_{0}-\alpha_{0}\right)+\alpha_{1} \cdot\left(X_{p}-X_{n}\right)+\alpha_{2} \cdot\left(X_{p}^{2}-X_{n}^{2}\right)+\ldots
$$

Further on:

$$
X_{p}=-X_{n}=\frac{\Delta X}{2}
$$

Results in

$$
\begin{aligned}
& \Delta Y=\alpha_{1} \cdot\left(X_{p}-\left(-X_{p}\right)\right)+\alpha_{2} \cdot\left(X_{p}^{2}-\left(-X_{p}\right)^{2}\right)+\alpha_{3} \cdot\left(X_{p}^{3}-\left(-X_{p}\right)^{3}\right)+\ldots \\
& \Delta Y=\alpha_{1} \cdot \Delta X+\frac{\alpha_{3}}{4} \cdot \Delta X^{3}+\ldots \text { Even-order terms disappear! }
\end{aligned}
$$

Distortion in a common-source

Assume a simple common-source with resistive load
First-order model $I_{D}=\alpha \cdot V_{\text {eff }}^{2}$

$$
V_{o u t}=V_{D D}-R \cdot I_{D}=V_{D D}-R \cdot \alpha \cdot V_{e f f}^{2}
$$

Assume a limited input signal

$$
\begin{aligned}
& V_{e f f}(t)=V_{e f f 0}+V_{x} \cdot \sin \omega t \\
& V_{o u t}(t)=V_{D D}-R \cdot \alpha \cdot\left(V_{e f f 0}+V_{x} \sin \omega t\right)^{2} \\
& V_{o u t}(t)=V_{D D}-R \cdot \alpha \cdot\left(V_{e f f 0}^{2}+2 V_{e f f 0} V_{x} \cdot \sin \omega t+V_{x}^{2} \sin ^{2} \omega t\right)
\end{aligned}
$$

$$
\left.V_{o u t}(t)=V_{D D}-R \cdot \alpha \cdot \left\lvert\, V_{e f f}^{2}+2 V_{e f f} V_{x} \cdot \sin \omega t+\frac{V_{x}^{2}}{2} \cdot(1-\cos 2 \omega t)\right.\right)
$$

$$
V_{\text {out }}(t)=\underbrace{V_{D D}-R \cdot \alpha \cdot V_{e f f}^{2}+V_{x}^{2} / 2}_{\mathrm{DC}}+\underbrace{2 V_{\text {eff0 }} V_{x} \cdot R \cdot \alpha \cdot \sin \omega t}_{\text {desired signal }}-\underbrace{\left(V_{x}^{2} / 2\right) \cdot \cos 2 \omega t}_{\text {distortion }}
$$

Compression analysis

$$
V_{\text {out }}(t)=\underbrace{V_{D D}-R \cdot \alpha \cdot V_{e f f}^{2}+V_{x}^{2} / 2}_{D C}+\underbrace{2 V_{e f f 0} V_{x} \cdot R \cdot \alpha \cdot \sin \omega t}_{\text {desired signal }}-\underbrace{\left(V_{x}^{2} / 2\right) \cdot \cos 2 \omega t}_{\text {distortion }}
$$

Signal power scales "linearly" with amplitude

Distortion power scales "quadratically"
At some point they will meet.

Intercept points
Output and input referred
IIP2, IIP3
OIP2, OIP3

A common measure of nonlinearity

Distortion vs Noise, concludingly

High signal power gives high signal-to-noise ratio
High signal power gives low signal-to-distortion ratio

This means that you need to distribute the gain between the different stages accordingly and trade-off between the two.

What did we do today?

Noise

Circuit noise
Thermal noise
Flicker noise

Distortion

What sets the (non)linearity in our CMOS devices?

What will we do next time?

Data converters

Fundamentals

