

Lecture 7, ANIK

Operational amplifiers 2

une color in co

What did we do last time?

Operational amplifiers

Top-level aspects

Compensation

Phase margin, stability, etc.

What will we do today?

Operational amplifiers continued

Circuit-level aspects

Implementation details

Operational amplifiers, revisited

Operational transconductance amplifier (OTA) Drive capacitive load, typically on-chip

Operational amplifiers (OP)

Drive resistive load, typically off-chip

Specifications

Differential input, opt. differential output Infinite gain Infinite input impedance Infinite (OTA) / Zero (OP) output impedance

Always used in feedback (otherwise it is a comparator)!

Why do you want controlled feedback?

Gain is now under control!

No variation with gm/gds, instead it is given by passive components

"Unlimited" drive capability

Isolation of input and output

Linearization

Remember, it is a regulation loop. It is designed to track the changes, anything added in the loop will be supressed.

Operational amplifier architectures

Telescopic

Two-stage

Folded-cascode

Current-mirror

Essentially just cascaded stages

Telescopic OTA

Stack many cascodes on top of each-other and use gain-boosting, etc.

Omitted, since it is not applicable for modern processes.

The swing is eaten up.

Two-stage OP, how it works

Gain

Transconductance Impedances

Swing

Common-mode range Output range Input range

KÖPINGA

Current-mirror OP/OTA, how it works

Gain

Transconductance Impedances

Swing

Common-mode range Output range Input range

Why folded-cascode?

Consider the CMR in buffer configuration

In telescopic OTA, the swing will be very small since bias transistor "locks" the voltage level

 V_{in}

 V_{out}

Folded-cascode, how it works

Gain

Transconductance Impedances

Swing

Common-mode range Output range Input range

Other practical concerns wrt. current

Feedback with resistors

An OP given with a certain current drive capability.

What is the maximum swing?

What is the DC level?

Other practical concerns wrt. bandwidth

Various unwanted effects

Limited gain

Offset error

Bandwidth

OP/OTA Compilation

Cookbook recipes

Hand-outs with step-by-step explanation of the design of OP/OTAs <u>http://www.es.isy.liu.se/courses/ANIK/download/opampRef/ANTIK_0NNN_LN_opampHandsouts_A.pdf</u>

Compensation techniques <u>http://www.es.isy.liu.se/courses/ANIK/download/opampRef/ANTIK_0NNN_LN_o</u> <u>pampCompensationTable_A.pdf</u>

What did we do today?

Operational amplifiers

Circuit-level aspects

Simulation aspects

Some terminology

Some top-level tips-and-tricks

What will we do next time?

Noise

Circuit noise

Thermal noise

Flicker noise

Distortion

What sets the (non)linearity in our CMOS devices?

Lecture 8, ANIK

Noise and distortion

hunder and the color of the col