Lecture 4, ANIK

Current mirrors

More on amplifiers (frequency domain)

What did we do last time?

Voltage swing
How far can we push the transistors?
Target: Force all operate in saturation region

Ways to increase the gain?
0) Physical sizing

1) Electrical handles
2) Cascodes
3) Multiple stages

What will we do today?

Current mirrors

Simple, Wilson, Wide-Swing, Cascoded
Decoupling design parameters using current mirrors
Improved amplifier stages
Folded-cascoded gain stage
Gain-boosting
The frequency domain
Dominant-pole, DC gain, unity-gain frequency

Some kind of wrap-up session

Current mirrors

Use currents to distribute references (low speed) over a chip

Receiver determines voltage across resistor

Resistance in wire does not matter

Local "ground" does not influence the result

Current mirrors, cont'd

Use currents to bias amplifier stages Decouples the design parameters!

We can "ignore" the size and $v_{\text {eff }}$ of the bias transistor (active load)

Set the current through a reference of some kind

Current mirrors, cont'd

Input (primary) should behave as a current sink, i.e., have

$$
Z_{i n}=0
$$

Output (secondary) should behave as a current source, i.e., have

$$
Z_{\text {out }}=0
$$

Current mirrors

Current mirrors, operation

The current relationship is given by the transistor sizes.
Notice that the $v_{e f f}$ is constant on the lower transistors.

$$
I_{\text {out }}=\frac{\alpha_{\text {out }}}{\alpha_{i n}} \cdot I_{i n}
$$

Compare with second-order model

$$
\frac{I_{\text {out }}}{I_{\text {in }}}=\frac{\alpha_{\text {out }}}{\alpha_{\text {in }}} \cdot \frac{1+\lambda v_{\text {out }}}{1+\lambda v_{\text {in }}}
$$

which will be too big of variations.

Current mirrors, nonidealties

Voltage swing
Potential drops back and forth

Calculating the impedances Use the quick-trick from cascodes for cascodes

Improved amplifier stages

Folded cascode
Common-source + common-gate

Same type of gain as in cascoded gain stage

Range increases (feedback configuration)

Why do we need the lower NMOS?

Improved amplifier stages

Gain-boosting
Additional amplifier sets the gain of the cascode
"Output impedance is multiplied by cascode"

What about the swing now?

Improved amplifier stages, cont'd

Folded cascode and gain boosting

Operation

Calculating the impedances Use the quick-tricks from cascodes for cascodes

The frequency domain

Include the capacitor in your calculations

The frequency domain

Small-signal exercise
 Impact of capacitor on common-source stage

Bode plot
Pole
DC gain
Unity-gain frequency

Compilation

The overall transfer function

$$
A(s)=\frac{A_{0}}{1+\frac{s}{p_{1}}}=\frac{\frac{g_{m}}{g_{\text {out }}}}{1+\frac{s}{\frac{g_{\text {out }}}{C_{L}}}}
$$

Notice the trade-off between bandwidth and gain!

$$
A_{0} \cdot p_{1} \approx \omega_{u g}
$$

Very crucial in your OP amp design

Amplifier stages, compiled 1

Expression	CS	CD	CG*)
DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$	$\approx \frac{g_{m}}{g_{P}+g_{N}}$	$\approx \frac{g_{m}}{g_{m}+g_{P}+g_{N}} \approx 1$	$\approx \frac{g_{m}}{g_{P}+g_{N}}$
Output impedance, $\approx g_{\text {out }}$	$\approx g_{P}+g_{N}$	$\approx g_{m}$	$\approx g_{P}+g_{N}$
Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$	$\approx \frac{g_{P}+g_{N}}{C_{L}}$	$\approx \frac{g_{m}}{C_{L}}$	$\approx \frac{g_{P}+g_{N}}{C_{L}}$
Unity gain, $\approx A_{0} \cdot p_{1}$	$\approx \frac{g_{m}}{C_{L}}$	N/A (why?)	$\approx \frac{g_{m}}{C_{L}}$

Amplifier stages, compiled 2

Expression

DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$

Output impedance, $\approx g_{\text {out }}$

Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$
Unity gain, $\approx A_{0} \cdot p_{1}$

$$
\begin{array}{cr}
\mathbf{C S} & \mathbf{C D} \\
\approx \frac{1}{\lambda \cdot v_{e f f}} & \approx 1 \\
\hline
\end{array}
$$

$$
\approx \lambda I_{D}
$$

$$
\approx \frac{\lambda I_{D}}{C_{L}}
$$

$$
\approx \frac{I_{D}}{C_{L} \cdot v_{e f f}}
$$

$$
\approx \frac{2 I_{D}}{v_{e f f}}
$$

$$
\approx \frac{2 I_{D}}{C_{L} \cdot v_{e f f}}
$$

N/A (why?)

CG*)

$$
\approx \frac{1}{\lambda \cdot v_{e f f}}
$$

$$
\approx \lambda I_{D}
$$

$$
\approx \frac{\lambda I_{D}}{C_{L} \cdot v_{e f f}}
$$

$$
\approx \frac{I_{D}}{C_{L} \cdot v_{e f f}}
$$

Other tips-and-tricks

Common-drain
If the voltage levels are not good enough, you can shift up/down
Isolation of sensitive nodes (buffering)
"Current-stealing"
Consider the folded cascode amplifier. Notice that the two branches steal current from a common current source. Also remember that gain is inversely proportional to current. By stealing current, we can lower current, and thus increase gain.

The transistor as a switch/resistor

The last operation

$$
I_{P N}=\alpha \cdot\left(2 V_{e f f} V_{d s}-V_{d s}^{2}\right)
$$

or

$$
I_{P N}=2 \alpha V_{d s} \cdot\left|V_{G}-V_{T}-\frac{V_{D}+V_{S}}{2}\right|
$$

Voltage dependent resistor, with conductance:

$$
\left.\left.G_{P N}=\frac{I_{P N}}{V_{d s}}=2 \alpha \cdot \right\rvert\, V_{G}-V_{T}-\frac{V_{D}+V_{S}}{2}\right)
$$

The transistor as a switch/resistor

The linearized model

$$
G_{P N}=2 \alpha \cdot\left(V_{G}-V_{D}-V_{T}\right)
$$

What to think about

How to use it

What did we do today?

Current mirrors

Simple, Cascoded, and Wide-Swing
Decoupling design parameters using current mirrors
Improved amplifier stages
Folded-cascoded gain stage
Gain-boosting
The switch

The frequency domain
Dominant-pole, DC gain, unity-gain frequency

What will we do next time?

Differential signals

Why differential?
Common-mode definitions
Differential pair
Analysis
Operation

Mismatch
Impact of mismatch on design/performance/behavior

