

Lecture 4, ANIK

Current mirrors More on amplifiers (frequency domain)

dileda ma

WWW.lin.sc/onliv

cheoripch vettsteknih 2000 uratt udlig vatt. EG/EU.vatt evatt, chadestadu/ avsaki vatt s afterwards

What did we do last time?

Voltage swing

How far can we push the transistors?

Target: Force all operate in saturation region

Ways to increase the gain?

0) Physical sizing

1) Electrical handles

2) Cascodes

3) Multiple stages

What will we do today?

Current mirrors

Simple, Wilson, Wide-Swing, Cascoded

Decoupling design parameters using current mirrors

Improved amplifier stages

Folded-cascoded gain stage

Gain-boosting

The frequency domain

Dominant-pole, DC gain, unity-gain frequency

Some kind of wrap-up session

Current mirrors

Use currents to distribute references (low speed) over a chip

Receiver determines voltage across resistor

Resistance in wire does not matter

Local "ground" does not influence the result

Current mirrors, cont'd

Use currents to bias amplifier stages Decouples the design parameters!

We can "ignore" the size and $v_{e\!f\!f}$ of the bias transistor (active load)

Set the current through a reference of some kind

Current mirrors, cont'd

Input (primary) should behave as a current sink, i.e., have

$$Z_{in}=0$$

Output (secondary) should behave as a current source, i.e., have

$$Z_{out} = 0$$

Current mirrors

Current mirrors, operation

The current relationship is given by the transistor sizes. Notice that the v_{eff} is constant on the lower transistors.

$$I_{out} = \frac{\alpha_{out}}{\alpha_{in}} \cdot I_{in}$$

Compare with second-order model

$$\frac{I_{out}}{I_{in}} = \frac{\alpha_{out}}{\alpha_{in}} \cdot \frac{1 + \lambda v_{out}}{1 + \lambda v_{in}}$$

which will be too big of variations.

Current mirrors, nonidealties

Voltage swing

Potential drops back and forth

Calculating the impedances Use the quick-trick from cascodes for cascodes

Improved amplifier stages

Folded cascode

Common-source + common-gate

Same type of gain as in cascoded gain stage

Range increases (feedback configuration)

Why do we need the lower NMOS?

Improved amplifier stages

Gain-boosting

Additional amplifier sets the gain of the cascode

"Output impedance is multiplied by cascode"

What about the swing now?

Improved amplifier stages, cont'd

Folded cascode and gain boosting

Operation

Calculating the impedances Use the quick-tricks from cascodes for cascodes

The frequency domain

Small-signal exercise

Impact of capacitor on common-source stage

Bode plot

Pole

DC gain

Unity-gain frequency

Compilation

The overall transfer function

$$A(s) = \frac{A_0}{1 + \frac{s}{p_1}} = \frac{\frac{g_m}{g_{out}}}{1 + \frac{s}{\frac{g_{out}}{C_L}}}$$

Notice the trade-off between bandwidth and gain!

$$A_0 \cdot p_1 \approx \omega_{ug}$$

Very crucial in your OP amp design

Other tips-and-tricks

Common-drain

If the voltage levels are not good enough, you can shift up/down Isolation of sensitive nodes (buffering)

"Current-stealing"

Consider the folded cascode amplifier. Notice that the two branches steal current from a common current source. Also remember that gain is inversely proportional to current. By stealing current, we can lower current, and thus increase gain.

The transistor as a switch/resistor

The last operation

$$I_{PN} = \alpha \cdot \left(2 V_{eff} V_{ds} - V_{ds}^2 \right)$$

or

$$I_{PN} = 2 \alpha V_{ds} \cdot \left| V_G - V_T - \frac{V_D + V_S}{2} \right|$$

Voltage dependent resistor, with conductance:

$$G_{PN} = \frac{I_{PN}}{V_{ds}} = 2 \alpha \cdot \left| V_G - V_T - \frac{V_D + V_S}{2} \right|$$

LIU EXPANDING REALITY

KÖPING.

 V_{P}

CTRL

 I_{PN}

N

The transistor as a switch/resistor

The linearized model

$$G_{PN} = 2 \alpha \cdot \left(V_G - V_D - V_T \right)$$

What to think about

How to use it

What did we do today?

Current mirrors

Simple, Cascoded, and Wide-Swing

Decoupling design parameters using current mirrors

Improved amplifier stages

Folded-cascoded gain stage

Gain-boosting

The switch

The frequency domain

Dominant-pole, DC gain, unity-gain frequency

What will we do next time?

Differential signals

Why differential?

Common-mode definitions

Differential pair

Analysis

Operation

Mismatch

Impact of mismatch on design/performance/behavior

