Lecture 2, ANIK

CMOS, Analog building blocks Monday, January 23, 2012 in P26

What did we do last time?

Introduction to the course
Labs, quizzes, exam, etc.

The transistor
Operating regions (cut-off, linear, saturation)
Functionality (output current as a function of the witdth and lenght)

First amplifier and parameters

What will we do today?

Small-signal schematics
Linearization

Further work on the analog building blocks
Common-source, common-drain, common-gate, etc.

The transistor revisited 1

(a) NMOS

(b) PMOS

The transistor revisited 2

LiU EXPANDING REALITY

The first amplifier revisited

A common-source amplifier

$$
v_{o u t}=V_{D D}-R_{L} \cdot I_{D}
$$

Saturation region

$$
v_{o u t}=V_{D D}-R_{L} \cdot \alpha \cdot v_{e f f}^{2}
$$

Linear region

The first amplifier revisited

Large-signal transfer characteristics

Position of DC point

Other design
requirements

LiU EXPANDING REALITY

Small-signal schematics

Linearization around a DC point
Small variations around the DC point are assumed
We will sum (superposition) the contributions from all different sources to the output
(Linearization implies no distortion)
Notice that there might be a trade-off between swing and max gain
The choice of DC point is non-trivial...

Linearization example

Original

$$
\left.\left.I_{D}=\frac{\mu C_{o x}}{2} \cdot \frac{W}{L} \cdot\left(V_{g s}-V_{T}\right)^{2} \cdot \right\rvert\, 1+\frac{V_{d s}}{V_{\theta}}\right)
$$

Apply partial derivation, i.e., linearize

$$
\begin{aligned}
& \Delta I_{D}=\frac{d I_{D}}{d \mu} \cdot \Delta \mu+\frac{d I_{D}}{d C_{o x}} \cdot \Delta C_{o x}+\frac{d I_{D}}{d W} \cdot \Delta W+\frac{d I_{D}}{d L} \cdot \Delta L+ \\
& +\frac{d I_{D}}{d V_{G S}} \cdot \Delta V_{G S}+\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}+\frac{d I_{D}}{d V_{D S}} \cdot \Delta V_{D S}+\frac{d I_{D}}{d V_{\theta}} \cdot \Delta V_{\theta}
\end{aligned}
$$

Linearization example, cont'd

We assume the physical parameters to be constant

$$
\Delta I_{D}=\frac{d I_{D}}{d V_{G S}} \cdot \Delta V_{G S}+\frac{d I_{D}}{d V_{D S}} \cdot \Delta V_{D S}+\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}
$$

Apply the chain rule

$$
\frac{d I_{D}}{d V_{T}} \cdot \Delta V_{T}=\frac{d I_{D}}{d V_{T}} \cdot \frac{d V_{T}}{d V_{B S}} \cdot \Delta V_{B S}
$$

Linearization example, cont'd

Introduce some nomenclature

$$
\Delta I_{D}=\underbrace{\frac{d I_{D}}{d V_{G S}}}_{g_{m}} \cdot \Delta V_{G S}+\underbrace{\frac{d I_{D}}{d V_{D S}}}_{g_{d s}} \cdot \Delta V_{D S}+\underbrace{\frac{d I_{D}}{d V_{T}} \cdot \frac{d V_{T}}{d V_{B S}}}_{g_{m b s}} \cdot \Delta V_{B S}
$$

and skip the deltas

$$
i_{d}=g_{m} \cdot v_{g s}+g_{d s} \cdot v_{d s}+g_{m b s} \cdot v_{b s}
$$

Which gives us a transistor "consisting" of three current sources

The small signal model and its impact

Illustration of the small signal model

Some calculations
(More practice in the lessons)

Transistors compiled

Expression

$$
g_{m b s}
$$

$g_{d s}$

Cut-off
$\frac{\kappa I_{D}}{k T / q}$

$$
g_{m} \cdot \frac{1-\kappa}{\kappa}
$$

λI_{D}

Linear

$$
2 \alpha v_{d s}
$$

$$
g_{m} \cdot \frac{\gamma}{2 \sqrt{V_{S B}+2 \phi_{F}}}
$$

$$
2 \alpha\left(v_{e f f}-v_{d s}\right)
$$

Saturation

$$
\lambda I_{D}
$$

How large are these values?

Transistor gain vs region

Expression

Cut-off
Linear

$$
A=\frac{g_{m}}{g_{d s}}
$$

$$
\frac{k \cdot q}{\lambda \cdot k T}
$$

Saturation

$$
\frac{2}{\lambda \cdot v_{e f f}} \frac{2 \sqrt{\alpha}}{\lambda \sqrt{I_{D}}}
$$

The three amplifier stages

With passive load

(a) NMOS CS

(b) NMOS CD

(c) NMOS CG

The three amplifier stages

With active load

Why active load?

The small signal exercises

Using the small signal approach to derive the gain

Amplifier stages, compiled 1

Expression

DC gain, $A_{0} \approx \frac{g_{m}}{g_{\text {out }}}$
Output impedance, $\approx g_{\text {out }}$

Input impedance, \square
Bandwidth, $p_{1} \approx \frac{g_{\text {out }}}{C_{L}}$

Unity gain, $\approx A_{0} \cdot p_{1}$

$\approx g_{P}+g_{N}$

∞

$$
\approx \frac{g_{P}+g_{N}}{C_{L}}
$$

$$
\approx \frac{g_{m}}{C_{L}}
$$

$$
\approx g_{m}
$$

$$
\approx \frac{g_{m}}{C_{L}}
$$

N/A (why?)

CG

$$
\approx \frac{g_{m}}{g_{P}+g_{N}}
$$

$$
\approx g_{P}+g_{N}
$$

$$
\approx g_{m}
$$

$$
\approx \frac{g_{P}+g_{N}}{C_{L}}
$$

$$
\approx \frac{g_{m}}{C_{L}}
$$

Amplifier stages, compiled 2

Expression

DC gain, $A_{0} \approx g_{m} / g_{\text {out }}$
Output impedance, $\approx g_{\text {out }}$

Input impedance, \square
Bandwidth, $p_{1} \approx g_{\text {out }} / C_{L}$
Unity gain, $\approx A_{0} \cdot p_{1}$
CS
$\approx 1 / \lambda \cdot v_{\text {eff }}$
$\approx \lambda I_{D}$

∞

$$
\approx \lambda I_{D} / C_{L}
$$

$\approx I_{D} / C_{L} \cdot v_{\text {eff }}$

CD
≈ 1
$\approx 2 I_{D} / v_{\text {eff }}$
∞
$\approx 2 I_{D} / C_{L} \cdot v_{\text {eff }}$

N/A (why?)

CG*)

$$
\approx 1 / \lambda \cdot v_{e f f}
$$

$$
\approx \lambda I_{D}
$$

$$
\approx 2 I_{D} / v_{e f f}
$$

$$
\approx \lambda I_{D} / C_{L} \cdot v_{e f f}
$$

$$
\approx I_{D} / C_{L} \cdot v_{\text {eff }}
$$

Amplifier stages, compiled 3

Amplifier stage

Common-source

Common-gate

Common-drain

When and what to use?

High-gain amplifier with high output impedance and high input impedance. Drive capacitive loads, typically in feedback.

High-gain amplifier with high output impedance and "low" input impedance. Drive capacitive loads, typically in feedback.

Low-gain amplifier with "low" output impedance and high input impedance. Drive resistive loads, can be in open-loop.

What did we do today?

"Simple" amplifier stages
A single transistor can be troublesome enough ...

Small-signal schematics practice
Practice, practice, practice

How do we increase gain?
What are our handles?

What will we do next time?

Swing
How many transistors can we stack?
Improving the gain
We need high gain - how do we do it?
Current mirrors

