Lesson 7

Lesson Exercises:	B15.1-3, B15.10 - B15.15, K11, K12, K16, K22

- Recommended Exercises: K10, K17, K18, K19, K20, K21
- Theoretical Issues: Filtersyntes med G_m-C element.

Theoretical

• Integrators. G_m-C building blocks

G_m-C Element

Current flowing out of the Gm-C element id equal to the transconductance times the voltage over the input.

 $i(t) = G_m \cdot [v_p(t) - v_n(t)] = G_m \cdot v_i(t)$

Ideally, the input current is zero, hence an infinite input impedance. The output impedance is considered to be zero.

Integrator

For an integrator we use a grounded capacitance. Assuming that the output is connected to a high impedance node, the output current from the Gm-C is described by the two relations

$$i(t) = C \frac{dv_{out}(t)}{dt}$$

and

$$i(t) = G_m \cdot v_{in}(t)$$

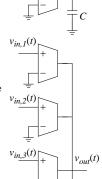
The output voltage is then simply found by substituing and integrate

$$v_{out}(t) = \frac{G_m}{C} \int v_{in}(t) dt$$

The summing integrator's output is found in the same way

$$v_{out}(t) = \frac{1}{C} \sum_{k=1}^{N} G_{m,k} \int v_{in,k}(t) dt$$

The $G_{m,k}/C$ factor is the scaling factor for the input voltage k.



С

 $v_{out}(t)$

A first order section

$$H(s) = \frac{a_0}{s+b_0}$$

The transfer function of the Gm-C circuit is

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{g_{m1}/C}{s + g_{m2}/C}$$

$$v_{in}(t) = v_{out}(t)$$

$$i_{out}(t) = -g_m \cdot v_{in}(t)$$

$$i_{in}(t) = -i_{out}(t)$$

Which gives

I

$$\frac{v_{in}(t)}{i_{in}(t)} = \frac{1}{g_m} \text{ with } R \equiv \frac{1}{g_m}$$

A second order section

Assume that we want to realize a single + + pole system according to

$$H(s) = \frac{a_1 s + a_0}{s^2 + b_1 s + b_0}$$

The solution to this problem is shown in the figure. We can use two voltages directly from the circuit, the v_{bp} and v_{lp} . They implement a band pass and low pass filtering.

$$\frac{V_{bp}(s)}{V_{in}(s)} = \frac{s\frac{s\frac{gm_1}{C_1}}{s^2 + s\frac{gm_2}{C_1} + \frac{gm_3gm_4}{C_1C_2}} \text{ and } \frac{V_{lp}(s)}{V_{in}(s)} = \frac{\frac{gm_1gm_3}{C_1C_2}}{s^2 + s\frac{gm_2}{C_1} + \frac{gm_3gm_4}{C_1C_2}}$$

 $v_{in}(t)$

 $v_{out}(t)$

and that the simulated inductor value is

Analog Discrete-Time Integrated Circuits, TSTE80

$$L \equiv \frac{C}{G_{m24}}$$

We see however that we also have to implement a floating resistor with G_m -C elements. Compare with the first order section as well. This is done by using the following structure.

$$I_{in} = -I_2$$
$$I_2 = G_{i2} \cdot (V_{i2} - V_{i2})$$

$$I_2 = G_{m2} \cdot (V_2 - V_{m})$$

$$I_{in} = G_{m2} \cdot (V_{in} - V_{ou})$$

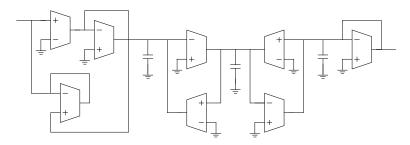
We directly see that

$$R \equiv \frac{1}{G_{m2}}$$

We have to guarantee that $I_{out} = -I_{in}$ as well.

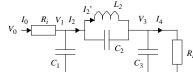
$$-I_{out} = I_1 + I_3 = G_{m1} \cdot V_{in} - G_{m3} \cdot V_{out}$$

The currents are equal when $I_{out} = -I_{in}$ when $G_{m1} = G_{m3} = G_{m2}$

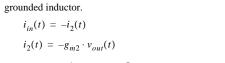


Elliptic filters

For the elliptic filter we have a slightly different situation. We have a floating inductor in parallel with a floating capacitance. A simple, but naive, implementation is to simply use a capacitance.



2



The two G_m-C circuits in the feedback structure function as a

$$v_{out}(t) = \frac{1}{C} \int i_1(t) dt = \frac{g_{m1}}{C} \int v_{in}(t) dt$$

Combining the equations gives

$$\frac{i_{in}(t)}{g_{m2}} = \frac{g_{m1}}{C} \int v_{in}(t) dt$$

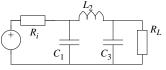
or

$$v_{in}(t) = \frac{C}{g_{m1} \cdot g_{m2}} \cdot \frac{di_{in}(t)}{dt} \text{ with } L \equiv \frac{C}{g_{m1} \cdot g_{m2}}$$

• Leapfrog filters (Gyrator filters)

Ladder Filters

The ladder filter structure with capacitances and inductors. We let the source and load have resistances.



We also now have a floating inductor, that has to be considered.

Floating inductors

The floating inductor can be realized by using the following structure:

$$I_{in} = -I_2 = -G_{m2}V_C$$

$$I_{out} = -I_4 = -(-G_{m4}V_C) = G_{m4}V_C$$

$$V_C = \frac{I_C}{sC}$$

$$I_C = I_1 + I_3 = -G_{m1}V_{in} + G_{m3}V_{out}$$

For the inductor, naturally, $I_{in} = -I_{out}$. This forces $G_{m2} = G_{m4} = G_{m24}$.

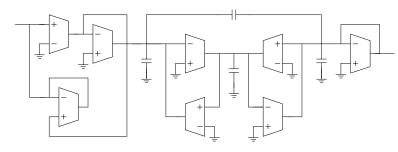
$$V_{out} = V_{in} \cdot \frac{G_{m1}}{G_{m3}} + sC \cdot V_C = V_{in} \cdot \frac{G_{m1}}{G_{m3}} - sC \cdot \frac{I_{in}}{G_{m24}}$$

Compare this with a true inductor

$$V_{out} = V_{in} - sL \cdot I_{in}$$

By identifying the terms we see that

$$G_{m1} = G_{m3} = G_{m13}$$



State-Variable Filters

For on-chip implementations it is however more suitable to use grounded capacitances (less parasitic capacitances).

We do the same transformation as in the previous lesson. A pair of voltage sources is introduced in the net.

Using Norton equivalents, this is transformed into

The inductor is still implemented with a gyrator.

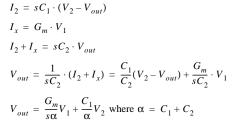
The capacitances, $C_1 + C_2$ and $C_2 + C_3$ are still

grounded. We have to realize

the current sources. This can be done by using operational amplifiers together with the $G_{\rm m}C$ element.

Exercise K10

The equations for the circuit are given by



With this circuit we can perform an addition and an integration.

Exercise K11

Or

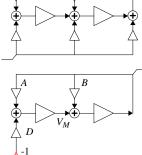
Realize the filter having the transfer function

$$H(s) = \frac{1 \times 10^6}{s^2 + 3 \times 10^5 \cdot s + 6 \times 10^6}$$

We rewrite the function as

$$Y(s) \cdot [s^2 + 3 \times 10^5 \cdot s + 6 \times 10^6] = 1 \times 10^6 \cdot X(s)$$

$$Y(s) = -\frac{3 \times 10^5}{s} Y(s) - \frac{6 \times 10^6}{s^2} Y(s) + \frac{1 \times 10^6}{s^2} X(s)$$



Lesson 7

Vout

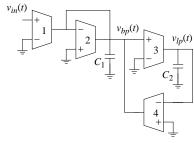
 C_2

The flow graph is transformed. $A = -6 \times 10^6$, $B = -3 \times 10^5$ and $D = -1 \times 10^6$. Note the insertion of the inverter. This can now be used to implement the _____ active filter.

A second order section can be used. From $v_{in}(t)$ the theory we know that -

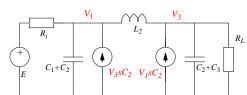
$$\frac{V_{lp}(s)}{V_{in}(s)} = \frac{\frac{g_{m1}g_{m3}}{C_1C_2}}{s^2 + s\frac{g_{m2}}{C_1} + \frac{g_{m3}g_{m4}}{C_1C_2}}$$

We can directly identify the values from by comparing the equations. Choose for example all capacitors equal, e.g. $C = 1 \times 10^{-9} \text{ F}$



Lesson 7

Elektronics Systems, http://www.es.isy.liu.se/



 C_1+C_2

 C_2+C_2

RI

ou

 C_2

Exercise K12

Realize the filter having the transfer function

$$H(s) = \frac{-1 \times 10^{6} (s-1)}{s^{2} + 3 \times 10^{5} \cdot s + 6 \times 10^{6}}$$

The function is rewritten in the same manner as in the previous exercise. In this case we however have a slightly different structure.

$$Y(s) = -\frac{3 \times 10^5}{s} Y(s) - \frac{6 \times 10^6}{s^2} Y(s) - \frac{1 \times 10^6}{s} X(s) + \frac{1 \times 10^6}{s^2} X(s)$$

We assume that we feed back the positive output (constant A) and we construct with a negative intermediate node, $-V_M$.

With

$$A = 6 \times 10^{6}$$
, $B = -3 \times 10^{5}$, $D = 1 \times 10^{6}$ and $E = -1 \times 10^{6}$

In this implementation we will follow the signal flow graph

Exercise K16

Synthesize an active elliptic leapfrog filter. Termination resistances are $1k\Omega$. Specification gives:

Pass band: $0 < \omega < 2\pi$ krad/s, $A_{max} = 0.1$ dB

Stop band: $\omega > 4\pi \text{ krad/s}, A_{min} > 20 \text{ dB}$

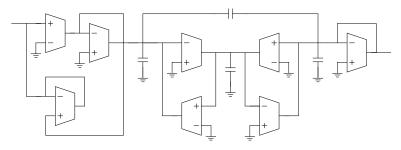
Order is found with table to be N = 3.

This gives following filter structure. Component values are found to be

$$C_1' = C_3' = 0.8740, C_2' = 0.2411$$
 och
 $L_2' = 0.9083,$ and $R_i = R_L = 1k\Omega,$
 $\kappa^2 = 1.$

Denormalized values are given by

$$C = \frac{C_n}{\omega_0 R_0}$$
 and $L = \frac{R_0}{\omega_0} L_n$ give $C_1 = C_3 \approx 139.1 nF$, $C_2 \approx 38.4 nF$, $L_2 \approx 144.6 mH$



Exercise B15.10

Extended to the exercise: $(W/L)_1 = (W/L)_2 = 5$.

Note that there is a constant current, I_1 , flowing through Q_1 and Q_2 . Assume that they are operating in their saturation region, that they have the same transconductance parameter, $\beta_{12} = \beta_1 = \beta_2$, and that they have the same threshold voltage, $v_{T,12}$, hence

$$I_{1} = \frac{\beta_{1}}{2} \cdot (v_{GS, 1} - v_{T, 12})^{2} = \frac{\beta_{2}}{2} \cdot (v_{GS, 2} - v_{T, 12})^{2}$$
$$v_{GS, 1} = v_{GS, 2} = \sqrt{\frac{2I_{1}}{\beta_{12}}} + v_{T, 12}$$

The source voltage at Q_1 may naturally be written as $v_{S,1} = v_i^+ - v_{GS,1}$ and correspondingly for the source voltage at Q_2 . Therefore, the voltage across Q_9 must be

 $(v_i^+ - v_{GS,1}) - (v_i^- - v_{GS,2}) = v_i^+ - v_i^- = -v_{DS,9}$

The current through Q_9 must be given by (the transistor is working in its triode region)

$$i_{D,9} = \frac{\beta_9}{2} \cdot (2(v_{GS,9} - v_{T,9}) - v_{DS,9}) \cdot v_{DS,9}$$

This is approximately

$$i_{D,9} \approx \beta_9 \cdot (v_{GS,9} - v_{T,9}) \cdot v_{DS,9} = -\beta_9 \cdot (v_{GS,9} - v_{T,9}) \cdot (v_i^+ - v_i^-)$$

The conductance is given by

$$g_{ds} = \frac{l_{D,9}}{v_i^+ - v_i^-} = \beta_9 \cdot (v_{GS,9} - v_{T,9})$$

We see that the current through Q_4 must be $I_1 + i_{D,9}$ and the current is mirrored to the output and therefore, $I_1 + i_{D,9}$ must flow through Q_8 as well. This indicates that $i_{o1} = i_{D,9}$ and we see from the equations that the G_m of the total circuit is given by

$$G_m = g_{ds}$$

Elektronics Systems, http://www.es.isy.liu.se/

Elektronics Systems, http://www.es.isy.liu.se/

It may be rewritten

$$i_{D,9} = -\beta_9 \cdot (V_C - v_{S,9} - v_{T,9}) \cdot (v_i^+ - v_i^-) = -\beta_9 \cdot (V_C - v_{S,1} - v_{T,9}) \cdot (v_i^+ - v_i^-)$$

or

$$G_m = g_{ds} \approx \beta_9 \cdot (V_C - v_{S,1} - v_{T,9})$$

The threshold voltage $v_{T,9}$ is given by

$$\begin{aligned} v_{T,9} &= V_{T0} + \gamma \cdot (\sqrt{2|\phi_F|} + v_{SB,9} - \sqrt{2|\phi_F|}) = \\ &= V_{T0} + \gamma \cdot (\sqrt{2|\phi_F|} + v_{S,1} - \sqrt{2|\phi_F|}) = v_{T,1} \end{aligned}$$

This gives that we can rewrite as

$$G_m = \beta_9 \cdot (V_C - (v_i^+ - v_{GS,1}) - v_{T,9}) = \beta_9 \cdot ((V_C - v_i^+) + (v_{GS,1} - v_{T,1})) = \beta_9 \cdot [(V_C - v_i^+) + \sqrt{2I_1/\beta_1}]$$

Values taken from page 78 in the text book give

$$G_m = (92\mu \cdot 2) \cdot \left[(5 - 2.5) + \sqrt{\frac{2 \cdot 100\mu}{92\mu \cdot 5}} \right] \approx 580\mu S$$

b) Simply use the values: $i_o = G_m \cdot (v_i^+ - v_i^-) = G_m \cdot (v_i^+ - 2.5)$

c) We cannot allow the approximation of the current through Q_9 . In this case

$$i_{D,9} = \frac{\beta_9}{2} \cdot (2(v_{GS,9} - v_{T,9}) - v_{DS,9}) \cdot v_{DS,9}$$

By differenting we find

$$G_m = g_{ds} = \frac{\partial i_{D,9}}{\partial v_{DS,9}} = \beta_9 \cdot (v_{GS,9} - v_{T,9} - v_{DS,9}) =$$

= $\beta_9 \cdot [(V_C - v_{S,1}) - v_{T,12} + (v_i^+ - v_i^-)] = \beta_9 \cdot [(V_C - v_i^-) + \sqrt{2I_1/\beta_1}]$

etc.

Exercise B15.12

$$(W/L) = 10/2 = 5$$
, $V_{DD} = -V_{SS} = 2.5$ V, and $V_{C,1} = -V_{C,2} = 2$ V

We first have to consider the CMOS pair that is described on pages 608-609. When cascoding a NMOS and PMOS transistor with same drain current flowing through both devices we can consider them as one transistor with certain properties. Consider

$$i_{D,n} = K_n \cdot (v_{GS,n} - v_{T,n})^2$$
 and $i_{D,p} = K_p \cdot (v_{SG,p} + v_{T,p})^2$

We see that

$$v_{GS,n} = v_{T,n} + \sqrt{i_D/K_n}$$
 and $v_{SG,p} = -v_{T,p} + \sqrt{i_D/K_p}$ where $i_{D,n} = i_{D,p} = i_D$
Let

$$v_{GS, pn} = v_{GS, n} + v_{SG, p} = (v_{T, n} - v_{T, p}) + \frac{\sqrt{i_D}}{\sqrt{K_n} + \sqrt{K_p}}$$

Let further

$$v_{T, pn} = v_{T, n} - v_{T, p}$$
 and $\frac{1}{\sqrt{K_{pn}}} = \frac{1}{\sqrt{K_n} + \sqrt{K_p}}$

hence

 $v_{GS, pn} = v_{T, pn} + \sqrt{i_D / K_{pn}}$ We now see that the drain current can be written as

$$i_D = K_{pn} \cdot (v_{GS, pn} - v_{T, pn})^2$$

In figure 15.30

$$\begin{split} &i_1 = K_{pn} \cdot (V_{C,1} - v_{in} - v_{T,pn})^2 \\ &i_2 = K_{pn} \cdot (v_{in} - V_{C,2} - v_{T,pn})^2 = K_{pn} \cdot (v_{in} + V_{C,1} - v_{T,pn})^2 \\ &i_1 - i_2 = K_{pn} \cdot (V_{C,1}^2 + v_{in}^2 + v_{T,pn}^2 - 2V_{C,1}v_{in} - 2V_{C,1}v_{T,pn} + 2v_{in}v_{T,pn}) - \\ &- K_{pn} \cdot (v_{in}^2 + V_{C,1}^2 + v_{T,pn}^2 + 2V_{C,1}v_{in} - 2V_{C,1}v_{T,pn} - 2v_{in}v_{T,pn}) = \\ &= K_{pn} \cdot (4V_{C,1}v_{in} - 4v_{T,pn}v_{in}) = 4K_{pn} \cdot (V_{C,1} - v_{T,pn}) \cdot v_{in} \end{split}$$

Then the G_m is given by

$$G_m = \frac{i_1 - i_2}{v_{in}} = 4K_{pn} \cdot (V_{C, 1} - v_{T, pn})$$

Use the values from page 78 to find the result.

Lesson 7

53