
TSTE80 ATIK and TSEI30 ANTIK Lecture 5 — Filters
5 Filters

Part 5.A—Filter specification
A specification on a bandstop (BS) filter is shown in Fig. 5.1 where the attenuation

function is given. The attenuation is found by

 and  when

Where the transfer function is defined as

The specification in the figure above is describing a bandstop (BS) filter. The stop-
band limits are given by and . The minimum allowed attenuation in the pass-
band is given by . In the lower passband, we have and , and in the
upper passband,  and .

However, mostly we consider the low pass filter in our applications (and especially
in this course). This implies that the upper passband dissappears. We use parame-
ters such as the

Attenuation (or ripple) in pass- and stopband:  and

Passband and stopband edges:  and

The ripple in the passband is also given by

We will not go into details about filters since this is the topics of other courses. How-
ever, roughly, the filter characteristics can be given by Butterworth, Cauer, or Che-
byshev polynomials. We characterize these  in a coarse way and say that

• Butterworth filter has maximally flat stopband and passband

• Cauer filter has equiripple in stop- and passband

Figure 5.1: A typical filter specification for a bandstop (BS) filter.
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Filter Types TSEI30 ANTIK and TSTE80 ATIK
• Chebyshev I filter has equiripple in the passband and maximally flat in the stop-
band

• Chebyshev II filter has equiripple in the stopband and maximally flat in the
passband

Part 5.B—Filter Types

Passive filters
The doubly resistive terminated LC-ladder filter prove to be very insensitive to vari-
ations in circuit component values.

The admittance and impedance value determine the transfer function of the filter.
The proper values can be found in tables, but a computer program is preferred.
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Figure 5.2: Filters.

Figure 5.3: Ladder filter structure.
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Passive filters are advantegous when they are to be used in “tough” environments
such as front-ends for telephone lines, etc., where the voltage levels can be very high.

However, in this course we focus on the active filters.

Active filters
Basically, when implementing an active filter we try to avoid resistors and inductors,
since they cannot (very hard to) be implemented on silicon. To achieve high linearity
in resistors we require special layers in our CMOS process. The inductors must be
simulated with active components such as the generalized impedance converter
(GIC) or through other means.

We use a number of active components, such as the operational amplifier (OP), oper-
ational transconductance amplifier (OTA), transconductance amplifier (Gm), in feed-
back configurations.

There are also different approaches to synthesize the active filters. Among the
approaches we point out the use of first- and second-order sections, state-variable,
and leapfrog filters.

Continuous-time or discrete-time filters?
Dependent on application we may want to implement discrete-time filters due to
higher accuracy. However, some other complexities aries in the design of discrete-
time filters. Mostly, we have the switched-capacitor (SC) and switched-current (SI)
discrete-time filters.

Since the output signal from a discrete-time filter has images throughout the fre-
quency domain a continuous-time filter is needed to remove these.

Part 5.C—Filter Synthesis
The objective with the following discussions is to find ways to express the filtering
functions with a number of additions, multiplications, and integrators. The
integrator is prefered since it is “simpler” to realize than the deriver and it also has
better noise properties due to the  slope.

To implement an integrator we also use an amplifier and this also motivates us to
find high-accuracy (high-gain) amplifiers during the rest of the course.

“Signal Flow Graphs” (State-variable)
Describing the filter using signal flows or state variables. Assume that the transfer
function, , of the filter is given by

where is the output signal and is the input signal. The equation can be
rewritten as

The output signal can be written as

1 s⁄

H s( )

H s( ) Y s( )
X s( )
----------

b0 b1 s⋅ … bM sM⋅+ + +

a0 a1 s⋅ … aN sN⋅+ + +
-------------------------------------------------------------= =

Y s( ) X s( )

H s( ) Y s( )
X s( )
----------

b0 s M–⋅ b1 s M– 1+⋅ … bM+ + +

a0 s N–⋅ a1 s N– 1+⋅ … aN+ + +
------------------------------------------------------------------------------ sM N–⋅= =
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This can further be rewritten as something like

This equation may be graphically represented as in Fig. 5.4. We use a number of inte-

grators, multipliers, and addition elements. On this behavioral-level, the description
holds for both currents and voltages. It is up to the designer to choose which circuit
elements that are best suited for implementation.

This approach is simple but the filters become sensitive to variations of circuit com-
ponents and there might be several buffers needed as well.

Cascaded first- and second-order sections
Another approach is to realize the filter with a number of filtering sections that are
cascaded. Hence from the transfer function we extract a number of subexpressions,
such that

And the idea is sketched in Fig. 5.5 Problems might arise due to input and output

impedance of the filtering sections and therefore buffers (Gain = 1) must be added
between the filtering stages.

Example of a second-order filter section (Bi-quad) is shown in Fig. 5.6. Using differ-
ent values on the parameters, we achieve different filtering func-
tions. We may have

, , ,

Where  is given by , etc.
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Figure 5.4: Signal flow graph representing the equations of the voltage transfer function.
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Figure 5.5: Cascaded first- and second-order filter sections.
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This approach is simple but the filters become sensitive to variations of circuit com-
ponents and there might be several buffers needed as well.

Leapfrog filters
As a good reference filter structure, we point out the ladder filter structure, due to
its optimal insensitivity. When we simulate the passive filter with active compo-
nents, it will inheret the properties of the passive filter, hence the active implemen-
tation will definitely not become better than the passive.

For our discussion we consider the ladder filter as illustrated in Fig. 5.7 below.

For a leapfrog filter, we investigate the voltages and currents at each node in the lad-
der structure. In Fig. 5.8 this is examplified and the formulas become

,

,

, etc.

Figure 5.6: Example of a second-order filter section.
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Figure 5.7: Ladder filter structure.
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Figure 5.8: Ladder filter with included currents and voltage nodes.
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By using a help resistance , the equations are rewritten to form voltage-only
parameters (states). We have that

,

,

, etc.

Using these equation, we may construct a signal flow chart as shown in Fig. 5.9 (a).

We can propagate the inverters through the net and reorder some of the amplifiers,
and change the sign of some of the nodes (states), and we get the result in Fig. 5.9(b).

We now see that we have three terms that include addmittances or impedances. If
we choose and we will have a number of integrators in the flow
instead as shown in Fig. 5.9(c).

The corresponding ladder structure is shown in Fig. 5.9 (b).
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Figure 5.9: Signal flow graph representing the equations for the ladder filter.
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Part 5.D—Circuit realization of filters
We can realize the integrators in several different ways. The first approach and hope-
fully well-known is using an operational amplifier (OP). The second approach can be
to use a transconductance-C (Gm-C) circuit. These two types are shown in Fig. 5.11.

We find the output voltages as

 for the OP and

 for the Gm-C.

Summations and gain factors can be realized with similar topologies as shown in Fig.
5.12 We find the output voltages as

 for the OP and  for the Gm.

Figure 5.10: Using inductors and capacitors give integrators in the signal flow graph.
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Figure 5.11: Summing integrators using (a) OP and (b) Gm.
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Figure 5.12: Summing amplifiers using (a) OP and (b) Gm.
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OPamp realization of leapfrog filter
In Fig. 5.13 we show the corresponding leapfrog filter implemented with operational
amplifier.

To find the correct values we compare the signal flowgraph with the OP leapfrog
implementation. Compare the signal path from  to .

Leapfrog Signal flow graph Result

There are more equations than variables and the best start is to set all capacitors
equally large, hence

Figure 5.13: OPamp realization of leapfrog filter.
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We can then derive the corresponding resistance values. The resistance values on the
inverting buffer, can be chosen so that it is in the same order of magnitude as the
other filter resistances. Also choose the values so that you achieve symmetry. And
finally you should choose the values to be as equal as possible (hence low variation
in parameter values).

Finally, we still may have to scale the filter and then some of the component values
will change.

Gm-C realization of leapfrog filter
Using the same signal flow graph we can easily find the Gm-C realization of the filter
as illustrated in Fig. 5.14.

Once again by identifying the signal flow graphs we find requirements on the com-
ponent values. We choose all capacitors to be equally large and then we find the sizes
of the transconductances and let them have as small variation as possible. The sym-
metry should also be utilized.

Part 5.E—Cauer filters
When dealing with cauer filters we have to be careful with capacitors in parallel with
inductors. A third order Cauer filter is shown in Fig. 5.15.

Introduce current and voltages and find the equations. Using a normalized resis-
tance, .

C4 C5 C6 C0= = =

r

gm1

gm2

gm3

gm4 gm5

gm6

gm7
C4 C5 C6

E

-V1
V3

-RI2

Figure 5.14: Gm-C implementation of the leapfrog filter.

Figure 5.15: Cauer (elliptic) filters contain capacitors in the inductive branches as well.
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However, it shows that we have a double zero for some of the equations due to the
capacitor in parallel with the inductor. To overcome this problem we introduce a help
current through the inductor, . we modify the equations according to:

 and

The expression  is eliminated in both equation for  and :

In the same way, we have

This will simulate two voltage-dependent voltage sources as illustrated in Fig. 5.16.

Basically, the influence of is now “moved” to the and branches. Using the
equations and the figure above, we can form the new signal flow graph as shown in
Fig. 5.17 where .

The corresponding OPamp realization is found in Fig. 5.18. By comparing the signal
paths through the two representations we can find the relations between circuit com-
ponents and specified values.
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Figure 5.16: Cauer filter with voltage-controlled voltage sources.
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We have that:

OP leapfrog Signal flow graph Result

E

R
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---------

C2–
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1
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R
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V3-V1
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Figure 5.17: Cauer filter signal flow graph.

Figure 5.18: Ladder filter with included currents and voltage nodes.
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h

Where  and .

Gm-C realization of Cauer leapfrog filter
Using the same signal flow graph we can easily find the Gm-C realization of the filter
as illustrated in Fig. 5.14. However, there is now a floating capacitor in the filter whic

should be avoided.One approach to do this is to rewrite the voltage controlled voltage
sources as voltage controlled current sources (Norton theorem) as shown in Fig. 5.20.
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Figure 5.19: Gm-C implementation of the Cauer leapfrog filter.
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Figure 5.20: Modification of the Cauer reference ladder filter to suit a Gm-C realization.
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We have to realize the current sources which can be done by using OPs together with
the Gm-C element but this is not part of the course.

Once again by identifying the signal flow graphs we find requirements on the com-
ponent values. We choose all capacitors to be equally large and then we find the sizes
of the transconductances and let them have as small variation as possible. The sym-
metry should also be utilized.

Part 5.F—Discrete-time filters
We will briefly discuss some different approaches to realize discrete-time filters.
Later on when we discuss SC filter we will come back to this.

Cascaded first- and second-order sections
The first filter implementation is straight-forward where we use a number of cas-
caded filter sections similar to the continuous-time case.

Signal flow graph or state variable
The second approach is to consider the transfer function of a discrete-time filter, e.g.

From this representation, we can generate a signal flow chart, similar to the one for
the continuous-time filters. However, notice that a discrete-time integrator (accumu-
lator) has a transfer function as

and there might be some tricks needed to find subexpressions in the transfer function
containing this accumulator function.

Transformation from continuous-time specification
We will however discuss the lossless discrete integrator (LDI) and bilinear trans-
forms. We use the continuous-time filter as reference and then we transform into a
discrete-time representation.

The LDI transform is given by

where is a normalizing constant. Although the LDI transform is approximate, it
is mostly preferred over the bilinear transform. The bilinear transform is given by

where is a normalizing constant. The bilinear transform i “exact” but gives a more
complex circuit implementation.

LDI manipulation of continuous-time reference filter
First one has to be careful with what is actually specified in a discrete-time filter.
Mostly, the wanted “analog” output specification is given. This implies that we have
to make a multi-stage transformation. Consider the case in Fig. 5.21.

H z( ) Y z( )
X z( )
----------

b0 b1 z 1–⋅ … bM z M–⋅+ + +

a0 a1 z 1–⋅ … aN z N–⋅+ + +
--------------------------------------------------------------------= =

I z( ) z 1–

1 z 1––
----------------=

s s0
z 1–
z1 2/
-----------⋅=

s0

s γ z 1–
z 1+
-----------⋅=

γ
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We first consider the reconstructed
specification. It will give us the
required parameters for the passband

 and

and the parameters for the stopband

 and

We will also get the sample frequency

We first consider the Poission formula

Hence what are the normalized angu-
lar frequencies, and , for the
discrete-time case. This will give us
the sampled filter specification.

Then we apply the LDI transform
inversely to find the proper reference
filter specification. Hence we want to
find the and used in a reference
filter so that the sampled filter will
give us the true result inspite of the
errors that the LDI transform intro-
duces.

Assume that we find a reference filter
and we de-normalize the values, etc.

We find the signal flow graph and then
we should apply the LDI transform to
this flow graph. Consider for example
the Cauer filter shown in Fig. 5.17.
Replace all continuous-time integra-
tors corresponding to the LDI transform:

This will give the result shown in Fig. 5.25(a). We must now eliminate all the
factors. They can be “moved around” in the graph and we end up with the result
shown in Fig. 5.22(b).

We now have a problem with the frequency-dependent outer branches:

which also has to be eliminated.

It can be found that
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Figure 5.21: Modification of the Cauer reference
ladder filter to suit a Gm-C
realization.
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time
We can approximate with and the resistance can be seen as a frequency
dependent resistance in parallel with a capacitor as illustrated in Fig. 5.23:

R
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1 z 1––
----------------–

R
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-V1

I0

V3=VL

-RI2’

1
s0Rα2
--------------- z 1 2/–

1 z 1––
----------------–

Figure 5.22: The Cauer reference ladder filter where integrators are replaced with discrete-
accumulators.
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Figure 5.23: Approximation of frequency-dependent resistance.
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time
This will give a modification of the circuit values as

and are changed into and , respectively. Finally we get the signal flow
graph shown in Fig. 5.24.

Sinc-weighting of signal spectrum
Due to the discrete-time properties (sample&hold at the output) the signal spectrum
will also become sinc weighted (as illustrated in Fig. 5.25). However, this can mostly

be compensated for by choosing the filter coefficients in a smart way. The images in
the frequency-domain have to be removed with a continuous-time filter.

To not have to care about the correction of the coefficents, one can choose to have a
much higher sampling frequency than signal frequency. However, this will give rise
to other problems.

Part 5.G—Filter scaling
A filter should be scaled for optimum performance.
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Figure 5.24: The Cauer reference ladder filter where integrators are replaced with discrete-
accumulators.

Figure 5.25: Resulting sinc-weighting of the output spectrum.
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• The signals are usually limited by the supply voltages, hence the signal swing

• Small signal swing gives a low SNR

Change the signal swing in “important” nodes to have

 (max over all frequencies).

Principle of scaling
Multiply all input signals to a sub-net by a factor and divide all output signal with
the same factor. The principle above is based on that if we do not change the loop
gains in the signal flow graph the poles of the transfer function are fixed.

In Fig. 5.26 we show an example of scaling of a third-order leapfrog filter.
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k2

1/k2 k3
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Figure 5.26: Example on scaling of a third-order filter.
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