1. PASSIVA STEGNÄT

Bland olika typer av passiva filter som man brukar använda sig av hör de dubbelt resistivt avslutade LC-stegnäten (doubly resistively terminated LC ladder networks) till de mest intressanta. Ur känslighetssynpunkt torde dessa strukturer vara de bästa passiva filtren och är användbara, framför allt när man vill åstadkomma realiseringar som skall approximera filter med passband, styckvis konstanta i frekvenshänseende, vilket är ett av de vanligaste önskemålen. Det är således lätt att inse att stegnät hör till de viktigaste filtertyperna. Själva stegnäten skall inte förväxlas med implementeringarna dessa kan naturligtvis bli dåliga, om man använder dåliga eller olämpliga komponenter men strukturerna har sådana egenskaper att man med lämplig implementering kan uppnå mycket goda resultat.

I figuren nedan visas strukturen för ett dubbelt resistivt avslutat stegnät. Impedanserna $Z_1 - Z_5$ förutsätts vara rent reaktiva.

I figuren nedan visas ett stegnät som t ex kan användas för att realisera ett 5:e ordningens elliptiskt filter. Filtret har två nollställepar på imaginära axeln i splanet. Vidare har filtret en reell pol och två komplexa polpar. Det principiella utseendet av pol-nollställekonfigurationen och amplitud- karakteristiken är också skisserade i figuren. Polerna beror av samtliga impedanser i filtret, medan nollställeparen beror var för sig på en av parallellresonanskretsarna (nollställen för $s = \pm j/\sqrt{L_2C_2}$ resp $s = \pm j/\sqrt{L_4C_4}$). Beträffande valet av elementvärden, kan dessa väljas på olika sätt, även för en och samma pol-nollställekonfiguration. Beräknar man den ur känslighetssynpunkt bästa uppsättningen av elementvärden, bör man dock få $R_i = R_1$.

På grund av de passiva stegnätens goda egenskaper har man med framgång använt dem som underlag eller "referensfilter" vid konstruktion av andra filtertyper. Man har konstruerat filter som på olika sätt efterliknar eller simulerar passiva stegnät och som således antagit mycket av "stegnätskaraktären". Exempel på sådan filter är aktiva RC-filter såsom GICfilter och leapfrogfilter, och i digitala filtersammanhang kan man nämna "digitala vågfilter", vilka är de bästa rekursiva digitala filtren (här kan dock även s k lattice- eller korslänksfilter användas som referensfilter).

Om man hämtar ett passivt filter ur en filtertabell, får man ett lågpassfilter, som är normerat med avseende på passbandsgränsen (cutoffvinkelfrekvensen). För Butterworth-filter gäller normeringen med avseende på 3 dB-gränsen (egentligen, 10 lg(2) \approx 3.0103 dB) som nämndes ovan. Filtret måste då "avnormeras" genom att man multiplicerar resistanser med en lämplig impedans- eller resistansnivå R₀, induktanser multipliceras med R₀/ ω_0 och kapacitanser multipliceras med $1/R_0\omega_0$, där $\omega_0 = \omega_c =$ önskad cutoffvinkelfrekvens. För Butterworth-filter gäller att $\omega_0 = \omega_{0p} = \omega_c \varepsilon^{-1/N}$, där N är filtrets ordning eller gradtal. Vad rena högpassfilter beträffar (och ev vissa bandpass- och bandspärrfilter), kan de konstrueras genom frekvenstransformering av lågpassfilter. Detta är välkänt från kretsteorin, och tas inte upp här till vidare diskussion.

2. AKTIVA FILTER

De passiva stegnäten som diskuterats ovan har flera goda egenskaper. Emellertid, är de relativt dyra och opraktiska att implementera. Exempelvis får ett filter avsett för relativt låga frekvenser stora induktanser, viket innebär stora spolar, vilket i sin tur innebär stora svårigheter att implementera med tillräckligt höga Q-värden (spolarnas förluster blir för stora). Vidare är det svårt att miniatyrisera spolarna, vilket naturligtvis i hög grad är önskvärt. Man har försökt lösa problemet genom att helt undvika spolar och i stället använda aktiva komponenter.

3. AKTIVA RC-FILTER

Vi skall här i någon mån studera hur man kan designa några vanliga typer av aktiva RC-filter. Dock skall vi inte gå in på allt för många detaljer, såsom värdering m a p känslighet etc av olika till synes ekvivalenta länkar. Den intresserade hänvisas till facklitteraturen på området. Tre olika huvudtyper av filter studeras i kursen, kaskadkopplade filterlänkar av 1:a eller 2:a ordningen, GIC-filter och leapfrogfilter. De förstnämnda kan man enkelt konstruera genom att direkt utgå från önskade poler och nollställen i s-planet. De andra konstruerar man så att de på något sätt simulerar passiva RLC-filter, vilka i allmänhet är dubbelt resistivt avslutade LC-stegnät. De aktiva RC-filtren är i allmänhet uppbyggda av tre typer av komponenter, operationsförstärkare, kondensatorer och resistorer.

3.1 Några viktiga byggblock med operationsförstärkare

Operationsförstärkarna ingår i olika byggblock, av vilka några av de viktigare visas i detta avsnitt. Antag att operationsförstärkarna är **ideala**.

Integrator: $V_2 = -\frac{1}{sRC}V_1$

Impedansomvandlingskrets ("GIC, Generalized Impedance Converter")

$$V_1 = V_2$$
; $I_1 = -I_2 \frac{Z_2 Z_4}{Z_1 Z_3}$; $Z_L = -\frac{V_2}{I_2} \implies Z_{in1} = \frac{V_1}{I_1} = \frac{Z_1 Z_3}{Z_2 Z_4} Z_1$

4. FILTER MED KASKADKOPPLADE LÄNKAR

För att konstruera ett filter med kaskadkopplade länkar, kan man utgå från en önskad pol-nollställe- konfiguration, varefter man beräknar de s k pol- och nollställeparametrarna, som i sin tur används för att bestämma de kaskadkopplade länkarnas olika koefficienter (s k koefficientanpassning). Den resulterande överföringsfunktionen för ett kaskadkopplat filter är lika med produkten av de olika länkarnas överföringsfunktioner. För ett kaskadkopplat filter med del-överföringsfunktioner $H_1(s)$, $H_2(s)$, ..., $H_M(s)$ för de olika länkarna enligt figuren, får vi alltså den resulterande överförings- funktionen:

$$H(s) = \frac{V_2(s)}{V_1(s)} = H_1(s)H_2(s) \dots H_M(s)$$

$$V_1 \stackrel{\bullet}{\longrightarrow} H_1 \stackrel{\bullet}{\longrightarrow} H_2 \stackrel{\bullet}{\longrightarrow} H_3 \stackrel{\bullet}{\twoheadrightarrow} \cdots \stackrel{\bullet}{\longrightarrow} H_M \stackrel{\bullet}{\longrightarrow} V_2$$

Länkarnas överföringsfunktioner väljs av 1:a eller 2:a ordningen och kan allmänt sett ha både poler och nollställen.

För en överföringsfunktion av 2:a ordningen med komplexa poler och nollställen

$$H(s) = \frac{A(s - n)(s - n^*)}{(s - p)(s - p^*)} = \frac{A(s^2 + 2\sigma_0 s + \omega_{00}^2)}{s^2 + 2\sigma_p s + \omega_{0p}^2}$$

definieras pol och nollställe-parametrarna enligt:

$$\sigma_{p} = -\operatorname{Re}\{p\}; \ \omega_{0p} = |p| \ ; \ Q = \frac{\omega_{0p}}{2\sigma_{p}} \ ("Quality") \ \sigma_{0} = -\operatorname{Re}\{n\}; \ \omega_{00} = |n|.$$

Polerna och nollställen kan skrivas

Pol- och nollställeparametrarna kan t ex anges såsom framgår av nedanstående exempel, en filterlänk med en operationsförstärkare och av 2:a ordningen.

Om operationsförstärkaren är ideal, kan överföringsfunktionen skrivas

$$H(s) = \frac{V_2(s)}{V_1(s)} = \frac{A}{mnef} \cdot \frac{1}{s^2 + s\left(\frac{1}{me} + \frac{1}{ne} + \frac{1-A}{mf}\right) + \frac{1}{mnef}}, \text{ där } A = 1 + \frac{R_2}{R_1}$$

Vi kan då realisera en överföringsfunktion av typen

$$H(s) = \frac{A\omega_{0p}^{2}}{s^{2} + 2\sigma_{p}s + \omega_{0p}^{2}}$$

Vi får inte några ändliga nollställen, men väl två ändliga poler, dvs länken lämpar sig för realisering av t ex lågpassfilter av allpoltyp. Om vi jämför uttrycken på överföringsfunktionen, inser vi, att vi exempelvis kan ställa upp följande design-regler:

Välj elementvärden t ex enligt följande samband:

A = 1, R₁
$$\rightarrow \infty$$
, (R₂ = 0), m = n, e = $\frac{1}{m\sigma_p}$, f = $\frac{e}{4Q^2}$

Det finns ett flertal olika länkar att välja på, beroende på vilken typ av överföringsfunktion man vill realisera, etc. Nedan visas en filterlänk (av typen DIG, Distributed Infinite Gain), som förutom poler även realiserar komplexa nollställen. En sådan länk kan man t ex använda, om man vill åstadkomma ett elliptiskt filter. För att ta fram en en 2:a ordningens filterlänk som kan realisera både poler och nollställen, kan vi utgå från ett signalflödesschema (i direktform II^t) som innehåller två integratorblock enligt figuren nedan. Man kan lätt visa att överföringsfunktionen för flödesschemat kan skrivas:

$$H(s) = \frac{V_2(s)}{V_1(s)} = -\frac{A_0 s^2 + A_1 s + A_2}{s^2 + B_1 s + B_2}$$

Jämförelse mellan flödesschemat och kretsschemat leder till följande samband mellan koefficienter i flödesschemat och elementvärden i kretsschemat:

$$\begin{aligned} & \frac{C_0}{C_1} = A_0 \ ; \ \frac{1}{R_1 C_1} - \frac{r_1}{R_3 R_4 C_1} = A_1 \ ; \ \frac{r_1}{r_2 R_3 R_6 C_1 C_2} = A_2 \ ; \\ & \frac{1}{R_2 C_1} - \frac{r_1}{R_3 R_5 C_1} = B_1 \ ; \ \frac{r_1}{r_2 R_3 R_7 C_1 C_2} = B_2 \end{aligned}$$

Man behöver inte använda båda resistorerna R_1 och R_4 — vi kan använda en av dem, beroende på tecknet på koefficienten A_1 . Emellertid, om vi, vilket ofta är fallet, vill realisera ett elliptiskt filter, ligger nollställena på j ω -axeln, dvs $A_1 = 0$, vilket innebär att vi inte behöver vare sig R_1 eller R_4 . På motsvarande sätt behöver vi inte använda båda resistorerna R_2 och R_5 . Dock kan inte B_1 vara negativ till skillnad för vad som gäller för A_1 , eftersom polerna alltid måste vara belägna i vänster halvplan för ett stabilt filter ($B_1 = -2 \text{ Re}\{p\}$). Inte heller kan B_1 vara = 0. Alltså räcker det med att använda enbart R_2 , såvida inte särskilda skäl talar för att vi skall använda både R_2 och R_5 . Enbart R_5 däremot, går naturligtvis inte att använda. En fördel med denna typ av krets är att man kan justera poler och nollställen till önskade lägen oberoende av varandra.

4.1 Skalning av signalnivåer

Signalnivåerna i ett filter kan variera avsevärt, speciellt i filter med höga Qvärden. I en DIG-länk kan signalnivåerna på operationsförstärkarnas utgångar vara väsentligt större inne i länken än nivån på länkens utgång, speciellt för frekvenser i närheten av det komplexa polpar, som länken skall realisera. Detta innebär att det finns risk att överstyra länken, så att signalen klipps inne i länken, trots att signalen på utgången verkar ligga inom rimliga gränser. Man inser att det är nödvändigt att vidta någon lämplig åtgärd för att komma till rätta med problemet, och denna lämpliga åtgärd är att skala länken med avseende på signalnivåerna. När det gäller just en DIG-länk, så är den optimalt skalbar i detta avseende, varför den **skall** skalas (ej "bör")! Principen för skalningen framgår av nedanstående resonemang.

Vi börjar med flödesschemat för en DIG-länk. Introducera en koefficient ("multiplikator") k på två ställen i scemat enligt figuren. Detta betyder att signalnivån vid X multiplicerats med en faktor k jämfört med den oskalade motsvarigheten. På så sätt kan man få en lämplig signalnivå i denna nod. Eftersom introduktionen av faktorn k inte skall påverka poler och nollställen i länken, introduceras även en faktor 1/k som i detta avseende upphäver inverkan av k, enligt vad som visas i figuren. Sinalnivån vid X, däremot påverkas. Utsignalen V₂ påverkas inte av k, men kan redan från början ges en lämplig nivå genom att man väljer koefficienterna i överföringsfunktionen lämpligt. Faktorn k kan bestämmas genom beräkning eller genom simulering med hjälp av något lämpligt program. Ett alternativt sätt är att göra en experimentuppkoppling av en oskalad länk, på vilken man mäter upp signalnivån vid X, varefter man bestämmer ett lämpligt värde på k.

I en DIG-länk som motsvarar flödesschemat finns det två interna signalnivåer att skala, nämligen utsignalerna X_1 och X_2 från de två operationsförstärkarna till vänster enligt figuren nedan. Därför introduceras två skalningsparametrar, k_1 och k_2 , som kan bestämmas oberoende av varandra, så att man får en lämplig nivå på båda de aktuella signalerna. Introduktion av parametrarna innebär att modifiera det oskalade filtrets elementvärden, vilket i sin tur innebär att de oskalade signalerna multipliceras med k_1 resp k_2 . Samtidigt skall man se till att parametrarna inte får någon inverkan på polerna och nollställena

genom att de får kancelleras av efterföljande multiplikationer med $1/k_1$ resp $1/k_2$.

Genom lämpligt val av skalningsparametrar kan de olika signalnivåerna skalas optimalt, oberoende av varandra. Man kan välja olika skalningskriterier, beroende på för vilken typ av signaler filtret skall användas, men ofta brukar brukar man skala, så att de maximala beloppen av överförings- funktionerna, räknade från filteringången till de olika utgångarna på operationsförstärkarna blir lika med 1. Detta innebär att utsignalernas amplituder, vilka varierar som överföringsfunktionernas belopp med frekvensen, maximalt blir lika med insignalens amplitud. Observera att överförings- funktionernas belopp ingalunda behöver anta sina maximala värden för samma frekvenser.

5. GIC-FILTER

En intressant typ av filter är de som bygger på principen att simulera impedanser, speciellt de som är uppbyggda med impedansomvandlare, s k GIC-kretsar ("Generalized Impedance Converter") som aktiva tvåportar (fyrpoler). Tanken är att man skall utgå från passiva referensfilter med goda egenskaper, i allmänhet dubbelt resistivt avslutade LC-stegnät, och sedan ersätta t ex de passiva induktiva elementen med aktiva RC kretsar som på något sätt åstadkommer simulering av impedanserna hos de ersatta elementen. Man hoppas att på så sätt bibehålla de goda egenskaperna m a p känslighet etc.

Generalized Impedance Converter, GIC

Sambandet mellan spänningar och strömmar för tvåporten kan uttryckas med K-matrisekvationen

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ & \mathbf{Z}_2 \mathbf{Z}_4 \\ 0 & \mathbf{Z}_1 \mathbf{Z}_3 \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

vilket innebär att inimpedansen kan skrivas

$$Z_{in} = \frac{V_1}{I_1} = \frac{Z_1 Z_3}{Z_2 Z_4} \cdot \frac{V_2}{-I_2} = \frac{Z_1 Z_3 Z_L}{Z_2 Z_4}$$

Med hjälp av kretsen kan således olika typer av impedanser (eller nät av impedanser) simuleras.

Om man väljer Z_1 , Z_2 , Z_3 och Z_L som resistanser R_1 , R_2 , R_3 och R_L , samt realiserar Z_4 med hjälp av en kapacitans C_4 , dvs så att $Z_4 = 1/sC_4$, får man inimpedansen

$$Z_{in} = \frac{V_1}{I_1} = \frac{sR_1R_3C_4R_L}{R_2}$$

vilket svarar mot K-matrisekvationen

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\mathbf{sk}_0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}, \, \mathrm{d}\ddot{\mathbf{a}}\mathbf{r} \, \mathbf{k}_0 = \frac{\mathbf{R}_1 \mathbf{R}_3 \mathbf{C}_4}{\mathbf{R}_2}$$

Kretsen får alltså en rent induktiv inimpedans. Den kan alltså användas när man vill simulera induktanser, t ex i filter av typen LC-stegnät.

6. LEAPFROG-FILTER

En intressant klass av filter, med vilken man strävar efter att simulera egenskaperna hos passiva filter av LC-stegnätstyp, företrädesvis dubbelt resistivt avslutade stegnät, är de s k leapfrogfiltren. Dessa filterstrukturer är särskilt viktiga, när man skall implementera filter monolitiskt, t ex i CMOSteknik — både som aktiva RC- och SC-filter. I denna del av kompendiet, skall vi studera hur man kan härleda och beräkna sådana aktiva RC-filter.

Beträffande namnet på denna filtertyp, kommer det av att man kan rita dess signalflödesschema så att det kan förknippas med leken "hoppa bock" (den engelska motsvarigheten är "leapfrog").

Studera figuren, som visar ett dubbelt resistivt avslutat stegnät med impedanser och admittanser markerade. Genom att ställa upp sambanden mellan de markerade strömmarna och spänningarna i nätet kan man få ett signalflödesschema, vilket kan användas som underlag för en realisering av ett aktivt RC-filter.

Genom att tillämpa välkända regler från grundläggande kretsteori får vi en uppsättning ekvationer vilka fullständigt beskriver sambanden mellan strömmar och spänningar i nätet:

$$\begin{split} I_0 &= \frac{1}{R_i} (E - V_1); \ V_1 = Z_1 (I_0 - I_2); \ I_2 = Y_2 (V_1 - V_3); \ V_3 = Z_3 (I_2 - I_4); \\ I_4 &= Y_4 (V_3 - V_5); \ V_5 = Z_5 (I_4 - I_6); \ I_6 = \frac{V_5}{R_t} \end{split}$$

Det är vanligt att man inför en "hjälpstorhet" R, så att man får dimensionen "spänning" på samtliga signalstorheter, dvs man får signalstorheter V_n och RI_n , n = 1, 2, ... Det är faktiskt inte nödvändigt att införa R, men praktiskt. Vidare blir koefficienterna dimensionslösa. Vi får då:

$$RI_{0} = \frac{R}{R_{i}}(E - V_{1}); V_{1} = \frac{Z_{1}}{R}(RI_{0} - RI_{2}); RI_{2} = RY_{2}(V_{1} - V_{3}); V_{3} = \frac{Z_{3}}{R}(RI_{2} - RI_{4});$$

$$RI_{4} = RY_{4}(V_{3} - V_{5}); V_{5} = \frac{Z_{5}}{R}(RI_{4} - RI_{6}); RI_{6} = \frac{R}{R_{L}}V_{5}$$

Dessa ekvationer svarar mot signalflödesschemat:

För att få en lämplig form som underlag för en aktiv filterrealisering, gör vi en lätt modifiering av schemat:

Observera, att modifieringen inte innebär någon approximation — schemat svarar fortfarande <u>exakt</u> mot den uppsättning ekvationer som beskriver strömspänningsrelationer i stegnätet. Det är ganska enkelt att inse att man teoretiskt skulle kunna åstadkomma en aktiv filterrealisering, svarande mot detta signalflödesschema, genom att koppla upp ett nät med ideala operationsförstärkare och "impedanser" såsom visas i figuren nedan. Vi har använt sådana summerande förstärkarkopplingar som visats tidigare.

6.1 Allpolfilter

Det visar sig fruktbart att följa den diskuterade idén även i praktiken. För t ex ett lågpassfilter av allpoltyp får vi ett filter bestående av summerande integratorer, vilka enkelt realiseras med operationsförstärkare, resistorer och kondensatorer. Betrakta ett allpolnät enligt figuren nedan.

På samma sätt som tidigare får vi nätets ström-spänningsrelationer:

Ekvationerna kan åskådliggöras med hjälp av signalflödesschemat:

Signalflödesschemat leder till följande aktiva filterrealisering:

Regler för beräkning av elementvärden erhålls relativt enkelt, om man jämför kretsschemat och flödesschemat med avseende på koefficienter och överföringsfunktioner. Vi inser att följande samband skall vara uppfyllda:

$$-\frac{1}{sR_6C_6} = -\frac{1}{sR_1C_1} \Rightarrow R_6C_6 = R_1C_1; \quad \frac{1}{sR_9C_7} \cdot \frac{r}{r} = \frac{R}{sL_2} \Rightarrow R_9C_7 = \frac{L_2}{R}; \text{ etc}$$

På motsvarande vis för övriga elementvärden.

6.2 Realisering av elliptiska leapfrogfilter

Att realisera ett elliptiskt filter "direkt" enligt vad som diskuterats i inledningen är inte så lyckat, eftersom vi i så fall får differentierare i nätet, vilket man vill undvika. Betrakta det elliptiska filtret enligt figuren nedan.

Exempelvis realiseringen av RY_2 ger en gren som motsvarar en integrator parallellt med en differentierare. P s s för realiseringen av RY_4 .

Om vi inte uttrycker filtrets ström-spänningsekvationer i I_2 och I_4 , utan använder I_2' och I_4' i stället enligt figuren, får vi ett lämpligare schema. Vi har bl a:

$$\begin{aligned} \mathbf{V}_{1} &= \frac{1}{\mathrm{sRC}_{1}} \left(\mathrm{RI}_{0} - \mathrm{RI}_{2} \right); \ \mathbf{RI}_{2} &= \mathrm{RI}_{2}^{'} + \mathrm{sRC}_{2} (\mathrm{V}_{1} - \mathrm{V}_{3}); \ \mathbf{RI}_{2}^{'} &= \frac{\mathrm{R}}{\mathrm{sL}_{2}} \left(\mathrm{V}_{1} - \mathrm{V}_{3} \right); \\ \mathbf{V}_{3} &= \frac{1}{\mathrm{sRC}_{3}} \left(\mathrm{RI}_{2} - \mathrm{RI}_{4} \right); \ \mathbf{RI}_{4} &= \mathrm{RI}_{4}^{'} + \mathrm{sRC}_{4} (\mathrm{V}_{3} - \mathrm{V}_{5}); \ \mathbf{RI}_{4}^{'} &= \frac{\mathrm{R}}{\mathrm{sL}_{4}} \left(\mathrm{V}_{3} - \mathrm{V}_{5} \right); \\ \mathbf{V}_{5} &= \frac{1}{\mathrm{sRC}_{5}} \left(\mathrm{RI}_{4} - \mathrm{RI}_{6} \right) \end{aligned}$$

Eliminering av I₂ och I₄ ger följande uttryck för V₁, V₃ och V₅:

$$V_{1} = \frac{1}{sR(C_{1} + C_{2})} (RI_{0} - RI_{2}) + \frac{C_{2}}{C_{1} + C_{2}} V_{3}$$

$$V_{3} = \frac{1}{sR(C_{2} + C_{3} + C_{4})} (RI_{2} - RI_{4}) + \frac{C_{2}}{C_{2} + C_{3} + C_{4}} V_{1} + \frac{C_{4}}{C_{2} + C_{3} + C_{4}} V_{5}$$

$$V_{5} = \frac{1}{sR(C_{4} + C_{5})} (RI_{4} - RI_{6}) + \frac{C_{4}}{C_{4} + C_{5}} V_{3}$$

För filtrets ändar har vi samma ekvationer som i föregående allpolfilter. Ström-spänningsekvationerna kan representeras enligt följande modifierade filter ($V_1 V_3$ och V_5 betecknar potentialer i förhållande till jord).

Ström-spänningsrelationerna i filtret kan beskrivas enligt följande schema, där $\alpha_1 = C_1 + C_2$, $\alpha_2 = C_2 + C_3 + C_4$ och $\alpha_3 = C_4 + C_5$.

Genom att bl a använda "byggblocket" nedan kan filtret realiseras, utan att det går åt flera operationsförstärkare än för ett "vanligt" allpolfilter. Sambandet mellan insignaler och utsignal i denna krets kan skrivas:

$$V_4 = -\frac{1}{sR_1C_4}V_1 - \frac{1}{sR_2C_4}V_2 - \frac{C_3}{C_4}V_3$$

Ett aktivt RC-filter kan då realiseras enligt nedanstående figur. Naturligtvis är det även här möjligt att realisera de icke-inverterande integratorgrenarna på alternativt sätt, såsom diskuterades för allpolfilterrealiseringen.

Jämförelse av kretsschema och flödesschema för filtret för bestämning av komponentvärden ger:

$$-\frac{1}{sR_6C_6} = -\frac{R}{R_i} \cdot \frac{1}{sR(C_1 + C_2)} \implies R_6C_6 = R_i(C_1 + C_2); \ \frac{C_{11}}{C_6} = \frac{C_2}{C_1 + C_2}; \ \text{etc}$$

Här har vi diskuterat filter av 5:e ordningen som exempel. Det är enkelt att generalisera diskussionen till filter av godtyckliga gradtal. Emellertid, filter av jämn ordning kräver en viss modifiering som framgår av följande exempel på ett 4:e ordningens filter.

Analogt med tidigare får man ett modifierat filterschema och signalflödesschema:

För att vi skall få en negativ återkoppling runt den högra slingan, återkopplar vi med R_{12} runt den inverterande integratorn. Om vi i stället hade återkopplat runt både integrator och inverterare, hade vi fått positiv återkoppling, vilket inte hade givit en fungerande filterrealisering.

Beträffande själva beräkningen av elementen i ett leapfrogfilter, så avbildar man ett dubbelt resistivt avslutat LC-stegnät som referensfilter, vilket skalats i frekvenshänseende. Om detta stegnät har frekvensskalats på lämpligt sätt, kommer leapfrogfiltret automatiskt att få samma frekvensskalning. Däremot är det inte någon vits med att skala impedansnivån i referensfiltret (att multiplicera med en lämplig resistans R₀), eftersom denna skalning kancelleras i leapfrogfiltret (om t ex i de tidigare diskuterade filtren $R = R_i = R_0 r$ och C_1 $= C_1'/R_0$, får man $R_iC_1 = RC_1 = rC_1'$, dvs produkterna blir oberoende av R_0 ; och på samma sätt för övriga storheter).

Alternativt kan man (i lågpassfallet) utgå från ett normerat referensfilter, och införa frekvensskalning i den komplexa frekvensen s enligt $S = s_0 s$, där s_0 är en reell konstant av lämplig storlek och S är komplex frekvens i det normerade fallet. Vi får då:

$$S = s_0 s \implies \Omega = s_0 \omega \implies 1 = s_0 \omega_0 \implies s_0 = 1/\omega_0$$
$$\implies -\frac{1}{SRC_1} = -\frac{1}{sR(s_0C_1)} \text{ och } \frac{R}{SL_2} = \frac{R}{s(s_0L_2)}, \text{ etc}$$

dvs denna frekvensskalning, som vi på så sätt inför i leapfrogfiltret, är ekvivalent med att frekvensskala referensfiltret (multiplicera induktanser och induktanser med s_0) så att den normerade vinkelfrekvensen $\Omega = 1$ (i lågpassfallet lika med filtrets cutoffvinkelfrekvens) motsvarar en vinkelfrekvens $\omega_0 = 1/s_0$.

6.3 Skalning av signalnivåer

Signalnivåerna i ett leapfrogfilter kan skalas optimalt genom att man modifierar resistanserna (eller RC-produkterna) på lämpligt sätt. För att åskådliggöra skalningstekniken kan vi studera följande exempel, där vi som referensfilter utgår från ett allpolfilter av tredje ordningen. I figurerna ser vi först referensfiltret och det oskalade flödesschemat.

Genom att introducera skalningsparametrar k_1 , k_2 och k_3 , samt de inverterade värdena $1/k_2$ och $1/k_3$ enligt schemat nedan, kan de oskalade signalerna X_1 , X_2 och X_3 förändras till optimal nivå. X_1 förändras genom multiplikation med faktorn k_1 till k_1X_1 . X_2 förändras till $k_1k_2X_2$ och X_3 förändras till $k_1k_2k_3X_3$. På så sätt kan man genom lämpligt val av skalningsparametrar få alla signalnivåer att anta önskad storlek — de kan skalas oberoende av varandra. De aktuella signalerna motsvarar utsignaler från operationsförstärkare i realiseringen nedan. Man kan skala på olika sätt, beroende på för vilken typ av signaler filtret skall användas, men ofta brukar brukar man skala så att de maximala beloppen av överföringsfunktionerna räknade från filteringången till de olika utgångarna på operationsförstärkarna blir lika med 1. Detta innebär att utsignalernas amplituder, vilka varierar som överföringsfunktionernas belopp med frekvensen, maximalt blir lika med insignalens amplitud. Observera att överföringsfunktionernas belopp i regel inte antar sina maximala värden för samma frekvenser.

Om det oskalade filtrets resistanser utmärks med ' (prim), får man det skalade filtrets elementvärden uttryckta i dessa värden enligt:

$$R_4 = \frac{R_4'}{k_1}$$
; $R_5 = R_5'$; $R_6 = R_6'k_2$; etc; som ger $\frac{-1}{sR_4C_4} = \frac{-k_1}{sR_4'C_4}$; etc.

Principen för skalning av signalnivåerna är densamma som används för SC-filter av leapfrogtyp (se SC-filterdelen). Jämför också signalskalning av aktiva s k DIG-länkar.

7. SC-FILTER

Omkring 1977 kunde man för första gången implementera kompletta integrerade SC-filter ("switchade kondensatorfilter") på ett enda chip, vilket medförde ett mycket stort intresse för denna typ av filter. En stor mängd artiklar har publicerats sedan dess, vilket är ett mått på detta stora intresse.

SC-filter implementeras i MOS-teknik med switchar, kondensatorer och operationsförstärkare. På så sätt får man filter, vilkas koefficienter bestäms enbart av kapacitansförhållanden och ej av absoluta kapacitansvärden. Eftersom noggrannheten i kapacitanskvoterna är mycket större än noggrannheten i absoluta kapacitansvärden, kan man realisera filter med goda egenskaper vad beträffar uppfyllandet av givna filterspecifikationer. För att uppnå detta krävs emellertid att man realiserar filtren med lämpliga "byggblock". Bl a gäller det att se till att s k parasitkapacitanser får så liten inverkan som möjligt.

I denna kurs kommer vi att studera metoder för realisering av SC-filter, vilka skall ge filter med goda egenskaper. De bästa filterstrukturerna som hittills tagits fram — och som är de klart dominerande — är de s k leapfrogfiltren. Därför kommer vi att koncentrera oss på denna viktiga typ av filter.

8. Implementering av SC-filter

En viktig anledning till att man satsat på att utveckla monolitiska SC-filter i MOS-teknik och inte i stället endast aktiva RC-filter, är att det är svårt att få tillräckligt bra RC-produkter. Monolitiska resistorer har dålig temperaturstabilitet och linjäritet och kräver dessutom relativt stor chiparea. Man kan inte få tillräckligt stor noggrannhet i RC-produkterna för att man skall kunna få filter som uppfyller några högre krav. Inte heller kapacitansernas absoluta värden har särskilt stor noggrannhet. Emellertid, som påpekades tidigare, så är koefficienterna i SC-filtren inte beroende av kapacitansernas absoluta värden, utan av kapacitanskyoter, vilket även innebär att filtrens överföringsfunktioner endast beror av kapacitanskvoter. Dessa kvoter kan med lämplig lavoutteknik fås med relativt stor noggrannhet (inom 0.1 % kan vara möjligt). En stor fördel med monolitiska MOS-kondensatorer är att de är anmärkningsvärt stabila med avseende på temperatur- och spänningskoefficienter (typiskt 20-50 ppm/°C resp 10-200 ppm/V, [4]). Vidare kan man tillverka små kondensatorer (kapacitanser så små som 0.5 pF möjliga), varför den totala chiparean kan bli relativt liten.

9. En SC-integrator

I aktiva RC-filter använder man sig ofta av integratorer som "byggblock", vilka är uppbyggda av resistorer, kondensatorer och operationsförstärkare. Genom att byta ut resistorn i integratorn mot en switchad kondensator enligt figuren nedan får man en SC-integrator.

SC-integrator, inkopplad till en spänningskälla v₁.

Vi skall nu studera SC-integratorns funktion och antar att operationsförstärkaren kan betraktas som ideal (oändlig inimpedans och förstärkning etc). Vi utnyttjar då att laddningen q hos en kondensator med kapacitansen C och spänningen v kan skrivas q = Cv. Då switchen S är i vänstra läget vid tidpunkten t - τ (t + τ etc), får kondensatorn C₁ laddningen $C_1v_1(t - \tau)$, dvs kondensatorn C_1 :s topplatta får denna laddning från spänningskällan. Samtidigt får kondensatorns bottenplatta motsvarande negativa laddning via jord. Då switchen vid tidpunkten t slår om till högra läget, kommer topplattan att anslutas till virtuell jord (op:ns inverterande ingång). Detta tvingar kondensatorn C_1 att laddas ur, så att kondensatorspänningen blir = 0. Bottenplattans laddning blir = 0 via jordanslutningen, men topplattans laddning har ingen annanstans att ta vägen än att gå till kondensatorn C₂:s vänstra platta, eftersom op:ns ingång inte drar någon ström. Kondensatorn C₂: laddning på vänster platta, som före switchomslaget var $-C_2v_2(t - \tau)$, förändras således, så att den blir $-C_2v_2(t) =$ $-C_2v_2(t - \tau) + C_1v_1(t - \tau)$. Samtidigt får den högra plattan en motsvarande laddningsmängd av motsatt tecken från op:ns utgång, så att den högra plattan totalt får laddningen $C_2v_2(t) = C_2v_2(t - \tau) - C_1v_1(t - \tau)$. Genom att på så så sätt studera laddningarna på kondensatorerna C_1 och C_2 före och efter switchomslaget från vänster till höger vid tidpunkten t, får vi ett samband mellan spänningarna vid olika tidpunkter, med vars hjälp vi kan härleda integratorns överföringsfunktion. Vi får tydligen från ovanstående villkor:

 $v_2(t) = v_2(t - \tau) - (C_1/C_2) v_1(t - \tau)$

Då switchen S sedan slår över till vänstra läget igen, förändras inte spänningen över C_2 , eftersom detta switchomslag inte medför någon förändring av laddningen på C_2 . Spänningen över C_2 , vilken är densamma som integratorns utspänning (i förhållande till jord), förblir konstant ända tills nästa gång det kommer en "skvätt laddning" från C_1 , dvs vid tidpunkten t + 2τ . Det gäller således att

 $v_2(t + \tau) = v_2(t)$, vilket ger oss följande samband för spänningarna under ett helt sampelintervall:

$$v_2(t + \tau) = v_2(t - \tau) - (C_1/C_2) v_1(t - \tau)$$

Omfördelningen av laddning mellan C_1 och C_2 vid tidpunkterna t, t + 2τ , etc, sker mycket snabbt genom en kort strömpuls omedelbart efter omslaget av switchen. Hur snabbt detta sker i realiteten, beror på kapacitanserna C_1 och C_2 , switchens resistans R_{on} , då den leder, och op:ns icke-ideala egenskaper. Men om inte klockfrekvensen är för hög, kan vi anta att strömpulsens bredd är försumbar jämfört med klockintervallets längd, varför utspänningen v_2 från op:n kan betraktas som en styckvis konstant spänning. Vi kan alltså betrakta v_2 som en "sample-and-hold-spänning", och vi kan därför beskriva systemet som ett tidsdiskret system. Vad spänningen v₁ beträffar, så kan den vara en kontinuerligt varierande spänning (en analog signal), men kan också lika gärna vara en styckvis konstant spänning från t ex en annan SC-integrator. Oavsett vilket som gäller, så samplas v₁ omedelbart före switchomslaget av integratorkretsen, som förutom att fungera som integrator, även fungerar som "sample-and-hold-krets" på samma gång. Samplingsfrekvensen är här lika med klockfrekvensen, men det bör poängteras att detta inte gäller allmänt för SC-filter. Ibland kan klockfrekvensen vara väsentligt högre än samplingsfrekvensen (vid t ex s k "dubbelsampling"). Det beror på hur filtren konstrueras.

Utsignal från integratorn

Om vi sätter t + τ = kT och 2τ = T (=sampelintervallet), får vi följande differensekvation:

 $v_2(kT) = v_2(kT-T) - (C_1/C_2) v_1(kT-T)$

Differensekvationen är en beskrivning av följande flödesschema:

Vi kan z-transformera differensekvationen, vilket leder till:

 $V_2(z) = z^{-1}V_2(z) - (C_1/C_2) z^{-1}V_1(z)$ vilket ger kretsens överföringsfunktion:

$$H(z) = V_2(z)/V_1(z) = -(C_1/C_2) z^{-1}/(1 - z^{-1}) = -(C_1/C_2)/(z - 1)$$

Överföringsfunktionen har en pol för z = 1, vilket kan anses motsvara punkten s = 0 i det tidskontinuerliga fallet (den aktiva RC-integratorn har en pol för s = 0).

Poler hos en integrator i z- resp s-planet (index "a" står för "analog").

Vad den styckvis konstanta utspänningen v_2 beträffar, så representerar "höjden av varje trappsteg" ett signalsampel. Samplet finns således tillgängligt under (praktiskt taget) hela sampelintervallet och kan när som helst under detta intervall matas vidare till nästa krets i det system, där integratorn ingår som delsystem. Observera, att integratorn inte används som ett ensamt system p g a polen på enhetscirkeln, utan integratorn ingår som del i något återkopplat system (ett helt filter), vilket motsvarar att polen flyttas innanför enhetscirkeln (jämför en aktiv RC-integrator med t ex en resistans parallellt med C_2). Eventuellt kan integratorn förses med en switch parallellt med C_2 , som med jämna mellanrum nollställer integratorn.

10. Parasitiska kapacitanser

Det är viktigt att komma ihåg, när man konstruerar ett SC-filter, att det finns parasitkapacitanser i varje nod i filtret. Det gäller att konstruera filtret på ett sådant sätt, att parasitkacitanserna får så liten inverkan som möjligt. Betrakta speciellt kretsen enligt figuren nedan, där parasitkapacitanserna i samtliga noder markerats. Kretsen är en summerande och integrerande krets, som ofta ingår som "byggblock" i SC-filter.

Parasitkapacitanserna inverkar på olika sätt i kretsen och har olika betydelse, beroende på vilket problem som betraktas. Om vi kan anse operationsförstärkaren såsom "någorlunda ideal", behöver vi egentligen endast betrakta inverkan av C_{p5} och C_{p6} . Vad $C_{p1} - C_{p4}$ beträffar, så kopplas de parallellt med olika spänningskällor (förstärkarutgångar), varför vi kan bortse från dem, när det gäller själva signalbehandlingen i integratorn/summatorn. På motsvarande sätt för C_{p8} . Parasiten C_{p7} har betydelse, när det gäller att bestämma "power-supply rejection". Den kan anses bestå av två komponenter, en till den negativa matningsspänningen och en till den positiva matningsspänningen. Ur signalbehandlingssynpunkt kan vi anta som en första approximation att C_{p7} inte inverkar, eftersom parasiten är kopplad till virtuell jord och således oladdad (däremot kan störningar i matningsspänningarna inverka via parasiten på signalbehandlingen).

För C_{p5} och C_{p6} gäller följande resonemang:

Om v₁ är en signalkälla (som i föregående exempel), kommer C_{p5} att laddas av källan parallellt med C_1 och således inverka på signalbehandlingen. Om däremot v₁ ersätts med jord, kommer C_{p5} att switchas mellan jord och virtuell jord, varför dess laddning förblir = 0 (eller konstant). I så fall kan C_{p5} :s inverkan negligeras (om op:ns förstärkning är någorlunda stor). Parasiten C_{p6} switchas mellan källorna v₂ och v₃ och inverkar inte på signalbehandlingen i kretsen. Om således v₁ är = 0 (jord), kan kretsen vid en första approximation anses vara "parasitokänslig". Detta innebär att integratorn i det tidigare exemplet inte är så lämplig, eftersom den är parasitkänslig. Man föredrar att i stället använda andra typer av integratorer (med insignaler v₂ och v₃), vilka behandlas senare.

Beträffande parasiternas storlek, etc, så är bottenplattparasiterna störst (och värst). Det finns filter som presenterats i facklitteraturen som är bottenplattparasitkänsliga, men sådana konstruktioner kan nog avskrivas såsom ganska värdelösa. En viktig sak att tänka på i detta sammanhang är att konstruera filtren på ett sådant sätt, att det är kondensatorernas topplattor som ansluts till op-ingångarna (både för fasta och switchade kondensatorer). Detta gäller även för "parasitokänsliga" SC-kretsar.

11. Byggblock i SC-filter — SC-integratorer

Det finns två huvudtyper av SC-integratorer man föredrar — båda är s k "parasitokänsliga" integratorer, dvs inverkan av parasitkapacitanserna är undertryckt. Här skall vi studera integratorernas funktion i detalj.

11.1 Icke-inverterande integrator

Betrakta integratorn vid tidpunkterna t - τ , t och t + τ , där τ = T/2, och T = sampelintervallet. Anta att operationsförstärken är ideal.

<u>Tidpunkt t - τ </u>:

Tidpunkt t:

Om vi sätter t + τ = kT och 2τ = T, får vi differensekvationen: v₂(kT) = v₂(kT - T) + C₁/C₂ v₁(kT - T)

dvs integratorn kan betraktas som (del av) ett tidsdiskret filter. Genom ztransformering kan vi få kretsens överföringsfunktion. Vi får tydligen:

$$V_2(z) = z^{-1}V_2(z) + C_1/C_2 z^{-1}V_1(z)$$

varefter vi får överföringsfunktionen $H(z) = V_2(z)/V_1(z)$ enligt:

$$H(z) = \frac{C_1}{C_2} \cdot \frac{z^{-1}}{1 - z^{-1}} = \frac{C_1}{C_2} \cdot \frac{1}{z - 1}$$

Speciellt får man på enhetscirkeln, dvs för $z = e^{j\omega T}$ $H(z) = \frac{C_1}{C_2} \cdot e^{-j\omega T/2} \cdot \frac{1}{j2\sin(\omega T/2)}$

I figuren visas utspänningen från integratorn och strömpulserna som funktion av tiden. Vi tänker oss att tidpunkterna t - τ , t och t + τ är tidpunkter omedelbart efter switchomslag. Vidare tänker vi oss att strömpulsernas bredd är så obetydlig, att den är försumbar vid jämförelse med sampelintervallet. Observera att dessa pulser enbart är de som orsakar omladdning av kondensatorn C₂. Givetvis får man också strömpulser vid uppladdning av C₁ (vid tidpunkterna t - τ och t + τ), men dessa är alltså inte med i figuren.

11.2 Inverterande integrator

Genom att ändra fasningen på switcharna får man en inverterande integrator. Denna är också "parasitokänslig". Med hjälp av laddningsanalys får man på liknande sätt som tidigare:

$$C_{1}$$

$$v_{2}(t) = v_{2}(t - 2\tau) - \underbrace{---}_{C_{2}} v_{1}(t)$$
Sätt t = kT och τ = T/2, så erhålles differensekvationen:
C_{1}

$$v_2(kT) = v_2(kT - T) - - v_1(kT)$$

C₂

Genom z-transformering får man överföringsfunktionen $H(z) = V_2(z)/V_1(z)$ enligt:

$$H(z) = -\frac{C_1}{C_2} \cdot \frac{1}{1 - z^{-1}} = \frac{C_1}{C_2} \cdot \frac{z}{z - 1}$$

Frekvensegenskaperna fås för $z = e^{j\omega T}$, dvs på enhetscirkeln i z-planet. Vi får:

$$H(z) = -\frac{C_1}{C_2} \cdot e^{j\omega T/2} \cdot \frac{1}{j2\sin(\omega T/2)}$$

Till skillnad från den icke-inverterande integratorn, har den inverterande integratorn en direktkoppling mellan in- och utgång under den ena klockfasen. Detta innebär att v_1 måste vara en styckvis konstant signal för att kretsen skall kunna betraktas som en tidsdiskret krets. Om kretsen används som ingångssteg i ett filter med tidskontinuerlig insignal, måste den i regel föregås av en extra sample-and-hold-krets. Eftersom detta kräver en extra förstärkare, försöker man undvika att använda integratorn på detta sätt.

 $\begin{array}{l} q_1(t) = C_1 v_1(t) \; ; \quad q_2(t) = C_2 v_2(t) \\ -q_1(t) - q_2(t) = - q_2(t - \tau) \\ C_1 v_1(t) + C_2 v_2(t) = C_2 v_2(t - 2\tau) \\ v_2(t) = v_2(t - 2\tau) - C_1 / C_2 v_1(t) \end{array}$

11.3 Integratorer med flera ingångar

I ett komplett filter används de föregående integratorerna i kombination med varandra. Man använder därvid samma operationsförstärkare för flera insignaler. I figuren visas några exempel. Parasitokänsliga realiseringar.

a) Differentiell integrator

b) Summerande integrator

c) <u>Summerande och inverterande integrator</u>

12. Design av SC-filter av leapfrog-typ

I detta kapitel skall vi studera design av SC-filter av i första hand LP-typ. De vanligaste (och kanske bästa) strukturerna är av leapfrogtyp. För denna typ av filter utgår man från ett analogt referensfilter, vanligtvis ett LC-stegnät som är dubbelt resistivt avslutat. Genom att utnyttja sambanden mellan strömmar och spänningar kan man få ett flödesschema innehållande integratorer som lämpar sig att avbilda till det tidsdiskreta fallet. Avbildningen sker genom någon lämplig transformation från s- till z-planet. Den enklaste transformationen man kan använda är den s k LDI-transformationen (Lossless Discrete Integrator), som från början användes av L. T. Bruton för att realisera digitala filter. Senare har den kommit att användas speciellt för SC-filter av leapfrogtyp. En liknande transformation, som framför allt har använts för digitala filter, är den bilinjära transformationen. Under senare år har transformationen också kommit till användning vid design av SC-filter.

12.1 LDI-transformerat filter

LDI-transformationen kan skrivas: $s = s_0(z^{1/2} - z^{-1/2}) = s_0(1 - z^{-1})/z^{-1/2}$

där s₀ är en skalningsfaktor för avbildningen mellan s- och z-planet. För s = $j\omega_a$ och z = $e^{j\omega T}$, där "a" står för "analog" och T är sampelintervallet, fås frekvenssambandet mellan det analoga och det tidsdiskreta fallet enligt

 $\omega_a = 2 s_0 \sin(\omega T/2)$

Konstanten s_0 bestäms av ett önskat frekvenssamband mellan det tidskontinuerliga filtret och det tidsdiskreta filtret. För en viss vinkel $\omega_0 T$ längs enhetscirkeln i z-planet och en motsvarande vinkelfrekvens ω_{a0} längs j ω_a -axeln i s-planet fås uppenbarligen:

 $s_0 = \omega_{a0}/[2 \sin(\omega_0 T/2)]$

vilket alltså bestämmer skalningen i avbildningen.

I stället för att använda en konstant s_0 , kan man naturligtvis använda transformationen utan denna konstant (vilket är detsamma som att sätta $s_0 = 1$). Detta är samma sak som att använda variabeln $S = s/s_0$ i stället för s, dvs det analoga filtret skalas före avbildningen, så att önskat resultat erhålles. Oftast brukar man som samhörande värden använda vinkel och vinkelfrekvens svarande mot filtrets bandbredd.

Exempel: Studera konstruktionen av ett 3:e ordningens LP-filter med cutoffvinkeln $\omega_c T = \pi/30 = 6^\circ$ (förhållandet mellan samplingsfrekvens och filtrets gränsfrekvens är 60). Utgå från ett 3:e ordningens filter av chebyshev I-typ med A_{max} = 0.5 dB. Använd LDI-transformationen.

Referensfilter:

Normerade värden: $R_i = R_L = 1$; $C_1 = C_3 = 1.5963$; $L_2 = 1.0967$ Konstruktion av flödesschema (R är en hjälpstorhet — en lämplig konstant eller i vissa fall en lämplig, frekvensberoende funktion):

Vi har fyra slingor i filtret. Två av dem har en total direkt fördröjning med ett sampelintervall T, vilket svarar mot faktorn z⁻¹. De yttre slingorna däremot, har en faktor z^{-1/2}, vilket motsvarar fördröjningen T/2. Dessa slingor är inte realiserbara, vilket innebär att vi antingen måste öka fördröjningen, så att vi får T i stället för T/2, eller också tar vi bort fördröjningen helt. En lämplig parasitokänslig realisering kan vi få om vi tar bort den helt. Detta innebär således för flödesschemat att vi modifierar detta så att vi har R/R_i resp R/R_L i de yttre återkopplingarna i stället för (R/R_i)z^{-1/2} resp (R/R_L)z^{-1/2}. På ingången kan vi tillföra en extra faktor - z^{-1/2}, vilket innebär att vi inför en extra fördröjning (som dock saknar betydelse, eftersom vi har en analog insignal) och ett teckenbyte hos utsignalen (\Leftrightarrow 180° fasändring). Vitsen med den sista modifieringen är att vi då kan använda den icke-inverterande integratorn för insignalen, och således slipper vi en extra sample-and-hold-krets. Vi får alltså schemat:

Att ta bort de yttre fördröjningarna får samma effekt som om referensfiltret hade innehållit impedanserna $R_i z^{-1/2}$ och $R_L z^{-1/2}$ i stället för R_i och R_L , vilket är ganska enkelt att inse. Om vi sätter $z = e^{j\omega T}$, dvs om vi väljer enhetscirkeln i zplanet, får vi:

 $R_{i}z^{-1/2} = R_{i}e^{-j\omega T/2} = R_{i}[\cos(\omega T/2) - j\sin(\omega T/2)]$

Eftersom $sin(\omega T/2) = \omega_a/2s_0$ enligt LDI-transformationen, får vi impedansen:

$$R_{i} [\sqrt{1 - (\omega_{a}/2s_{0})^{2}} - j(\omega_{a}/2s_{0})]$$

Uppenbarligen kan detta uttryck tolkas som en frekvensberoende resistans i serie med en negativ induktans $L = -R_i/2s_0$.

vilket är detsamma som impedansen:

$$\frac{1}{\sqrt{1 - (\omega_a/2s_0)^2} / R_i + j(\omega_a/2s_0R_i)]} = \frac{1}{G + jB}$$

där G + jB är motsvarande admittans. Uppenbarligen kan detta uttryck tolkas som den frekvensberoende resistansen $R_{\rm i}$

parallellt med kapacitansen
$$1/2s_0R_i$$

 $\sqrt{1 - (\omega_a/2s_0)^2}$
 $R_i / \sqrt{1 - (\omega_a/2s_0)^2}$
 $R_i / \sqrt{1 - (\omega_a/2s_0)^2}$
 $C = \frac{1}{2s_0R_i}$

Eftersom vi valt ett referensfilter med en strömgenerator på ingången, kommer kapacitansen $1/2s_0R_i$ att hamna parallellt med kapacitansen C_1 och således adderas till denna. Detta är ekvivalent med att vi har ett något felaktigt

referensfilter. Men vi kan kompensera för denna kapacitansaddition genom att från början subtrahera bort motsvarande kapacitans från C_1 , dvs i stället för C_1 , använder vi den korrigerade kapacitansen $C_1' = C_1 - 1/2s_0R_i$ i referensfiltret, alltså kapacitansen $C_1' = C_1 - \sin(\omega_0 T/2)/\omega_{a0}R_i$ om vi sätter in uttrycket på s_0 . På samma sätt får vi kapacitansen $C_2 - \sin(\omega_0 T/2)/\omega_{a0}R_i$ i stället för C_2 .

Därmed har vi kompenserat för de extra kapacitanser som det motsvarar att ta bort faktorn $z^{-1/2}$ i de yttre återkopplingarna. Vad frekvensberoendet hos resistanserna beträffar, så är det svårare att kompensera för detta. Vi måste i så fall designa ett nytt referensfilter med hjälp av ett datorprogram, i vilket man tar hänsyn till frekvensberoendet hos resistanserna. Detta gör vi inte här, utan vi lämnar det problemet. För övrigt är inte felet särskilt stort i ett någorlunda smalbandigt filter, eftersom i så fall:

 $\omega_a/2s_0 = \omega_a \sin(\omega_0 T/2)/\omega_{a0} \ll 1 \ (\omega_a < 1 \ i \ passbandet)$

För att sammanfatta det hela, så har vi alltså fått ett referensfilter enligt figuren nedan med tillhörande, kompenserat flödesschema. Vidare ser vi en SC-filterrealisering, i vilken vi använt en ickeinverterande, summerande integrator och två inverterande, summerande integratorer. Filtret är parasitokänsligt, dvs inverkan av parasitkapacitanser är kraftigt undertryckt. Kapacitanserna i SC-filtret har numrerats $C_4 - C_{13}$ för att inte någon förväxling med referensfiltrets kapacitanser skall riskeras.

Genom jämförelse av flödesschema och SC-filter kan vi bestämma kapacitanskvoterna (observera att det alltid är fråga om att bestämma kapacitanskvoter; absoluta kapacitansvärden är ett problem att lösa, när filtret skall implementeras i hårdvara). Vi får:

12.2 Spänningsgenerator i referensfiltret

Om referensfiltret i stället har en spänningsgenerator enligt figuren, ändrar detta egentligen ingenting vad realiseringen av leapfrogfiltret beträffar. Vi får:

Leapfrogschemat skiljer sig från det tidigare endast vad beträffar konstanten på ingången, vilket är oväsentligt. Denna konstant (som inte ingår i någon loop, och inte behöver korrigeras för approximationer i LDItransformeringen) kommer ändå att förändras, när man skalar filtrets signalnivåer, vilket gås igenom senare. Detta innebär att design och kompensering vid realisering av ett SC-filter blir på samma sätt som tidigare.

12.3 Realisering av ett elliptiskt filter

Om referensfiltret är ett 3:e ordningens elliptiskt filter enligt figuren, blir leapfrogschemat lätt modifierat. Design och realisering sker på analogt sätt som för det tidigare filtret. Även här får man samma kompensering som tidigare, dvs de yttre kapacitanserna har minskats med $1/2s_0R_i$ resp $1/2s_0R_L$ jämfört med "tabellfiltret".

Kapacitanserna i SC-filtret har normerats m a p kapacitanserna parallellt med operations- förstärkarna. Det gäller att :

 $a_0 = a_1 = a_2 = 1/s_0 R \alpha_1'$; $b_1 = C_2/\alpha_1'$; $b_2 = C_2/\alpha_2'$; $a_5 = a_6 = 1/s_0 R \alpha_2'$;

$$a_3 = a_4 = R/s_0L_2$$
; $R = R_i = R_L = 1$.

12.4 Skalning av signalnivåerna i leapfrogfilter

Signalnivåerna i ett aktivt RC-filter eller SC-filter kan variera avsevärt, vilket gör det önskvärt att kunna skala nivåerna, så att man ökar det dynamiska området. Vissa filterstrukturer eller realiseringar kan vara svåra (eller omöjliga) att skala, vilket är en väsentlig nackdel för dessa strukturer. För att man inte skall överstyra någon av förstärkarna i en sådan realisering, kan det vara nödvändigt att hålla insignalen på en relativt låg nivå, vilket naturligtvis innebär att signal-brusförhållandet blir dåligt. Leapfrogfilter, däremot, är optimalt skalbara, under förutsättning att man använder integratorer, för vilka ingångssignalerna kan multipliceras med olika koefficienter. De realiseringar som tas upp här är just av en sådan typ. Denna möjlighet till optimal skalning i kombination med låg känslighet för elementvariationer, samt att man i SC-filterfallet kan åstadkomma parasitokänsliga realiseringar, gör att just leapfrogfilter är bland de bästa SC-filter man kan konstruera.

Principen för skalning av leapfrogfilter är egentligen mycket enkel och förklaras här med hjälp av ett exempel. Betrakta flödesschemat i figuren nedan, som motsvarar ett 3:e ordningens elliptiskt filter. Filtret är först oskalat och har då utsignalerna X_1 , X_2 , X_3 från de grenar som motsvarar förstärkare i realiseringen. Dessa signaler är således detsamma som utsignalerna från de olika förstärkarna. Genom att införa extra koefficienter k_1 , k_2 , k_3 , $1/k_2$ och $1/k_3$ kan vi skala alla dessa signaler till en lämplig nivå, utan att vi förändrar överföringsfunktionens poler och nollställen i z-planet. Införandet av dessa koefficienter motsvarar införandet av ideala transformatorer i referensfiltret. Observera, att skalningsmetoden är densamma för aktiva RC-filter av leapfrogtyp.

Principen för skalning är följande:

Med k₁ multipliceras alla signalnivåer i noder som kommer efter denna koefficient, dvs X_1 , X_2 och X_3 kommer allesammans att multipliceras med k_1 . Välj k_1 så att k_1X_1 får en lämplig nivå. Med k_2 multipliceras alla signalnivåer till höger om denna koefficient, dvs X_2 och X_3 . Samtidigt som vi inför k_2 , inför vi också det inverterade värdet 1/k₂, varför signalnivåer till vänster - t ex X₁ — inte påverkas. Välj k₂ så att $k_1 k_2 X_2$ får en lämplig nivå. Slutligen väljs k_3 så att $k_1k_2k_3X_3$ får en lämplig nivå. Införandet av $1/k_3$ medför att signalnivåer till vänster om k₃ inte påverkas av denna multiplikation. Genom att följa den beskrivna skalningsproceduren har vi således fått en lämplig nivå hos samtliga signaler, dvs filtret blir optimalt skalat. Hos SC-filterrealiseringen innebär skalningen inte någon förändrad struktur. Det enda som händer är att kapacitansförhållanden förändras jämfört med det oskalade filtret. Man brukar välja skalningskoefficienterna på ett sådant sätt att de maximala signalnivåerna (vilka inträffar för olika frekvenser i olika noder) blir lika med insignalens nivå — s k L_m-normskalning. På så sätt kan man garantera att utsignalen från samtliga förstärkare aldrig får ett större swing än insignalen, och filtret kan inte överstyras (om inte insignalen är orimligt stor).

I figuren nedan visas en skalad SC-filterrealisering. Jämför med det oskalade filtret i föregående avsnitt. kapacitanserna är normerade m a p kapacitanserna parallellt med op-förstärkarna, vilket innebär att värdena är detsamma som kapacitanskvoterna. Det gäller att $X_1' = k_1X_1$, $X_2' = k_1k_2X_2$, $X_3' = k_1k_2k_3X_3$.

När man bestämmer skalningskoefficienternas storlek, använder man sig lämpligen av ett simuleringsprogram, med vars hjälp man bestämmer överföringsfunktionernas maximala absolutbelopp (L_{∞} -normerna) i det oskalade filtret, varefter skalningskoefficienterna enkelt kan beräknas.

På analogt sätt kan filter av högre ordning skalas. Se även övningsexempel 11 och 15.

13. Simulering av SC-filter

Vid konstruktion av SC-filter använder man sig lämpligen av något simuleringsprogram, med vars hjälp man enkelt kan studera frekvenssvaren (belopp och fas) m m. Det finns flera olika program för detta ändamål tillgängliga, t ex SWITCAP, som utvecklats vid Columbia-universitetet i New York. Detta program är enkelt att använda och har blivit populärt bland SCfilterkonstruktörer på många håll i världen.

14. Bilinjärt transformerade SC-filter

LDI-transformation kan egentligen endast användas för relativt smalbandiga filter (förhållandet mellan bandbredd och samplingsfrekvens är litet). För bredbandigare filter kan man i stället använda sig av den bilinjära transformationen, vilken i princip kan användas för godtyckliga bandbredder (givetvis måste bandbredden vara mindre än halva samplingsfrekvensen, ett krav som alltid gäller vid tidsdiskreta filter). Den bilinjära transformationen kan skrivas:

 $s=s_0 \frac{1-z^{-1}}{1+z^{-1}} \qquad \begin{array}{c} 1+s/s_0\\ \Leftrightarrow \quad z=----\\ 1-s/s_0 \end{array}$

där s₀ är skalningskonstant för avbildningen mellan s- och z-planet. För s = $j\omega_a$ och z = $e^{j\omega T}$ får man frekvenssambandet: $\omega_a = s_0 \tan(\omega T/2)$

Precis som för LDI-transformationen bestäms skalningskonstanten av ett önskat frekvenssamband, vanligen vid bandgränsen. Vi får:

 $s_0 = \omega_{a0}/tan(\omega_0 T/2)$

Ofta utelämnar man konstanten s_0 i transformationen (detsamma som att sätta $s_0 = 1$). Detta är ekvivalent med att använda den normerade variabeln $S = s/s_0$ i stället för s i det analoga filtret (jämför med design av digitala vågfilter, där Richards' variabel används). I figurerna nedan visas hur s-planet avbildas på z-planet genom den bilinjära transformationen, samt hur ett lågpassfilter avbildas enligt frekvenssambandet $\omega_a = s_0 \tan(\omega T/2)$. Speciellt kan observeras att s = 0 avbildas på z = 1, och att $s = \infty$ avbildas på z = -1.

Den bilinjära transformationen kan leda till mera komplicerade flödesscheman än LDI-transformationen, scheman som inte lämpar sig direkt för filterrealisering. Emellertid är det möjligt att göra vissa manipuleringar så att man får scheman som är bättre för detta ändamål.

I följande avsnitt skall vi studera hur man kan manipulera flödesschemat, då man använder sig av den bilinjära transformationen. Det resultat man erhåller är ett schema liknande det man får med LDI-transformatioen. Skillnaden är att man slipper göra de approximationer som är nödvändiga med LDItransformationen. Man kan således få en "exakt" realisering av den bilinjärt transformerade överföringsfunktionen.

Vi skall använda den bilinjära transformationen utan s_0 i uttrycken, eftersom detta är det vanligaste förfarandet numera. Detta betyder att man skalar referensfiltret före själva avbildningen, så att man får önskat resultat. Utgångsfiltrets induktanser och kapacitanser, L_i' och C_i' , multipliceras därvid med $s_0 = \omega_{a0}/\tan(\omega_0 T/2)$, så att man får induktanserna och kapacitanserna

 $L_i = L_i' s_0$ och $C_i = C_i' s_0$

i stället. På motsvarande sätt kunde vi vid LDI-transformationen ha "bakat in" $s_0 = \omega_{a0}/[2\sin(\omega_0 T/2)]$ i referensfiltrets induktanser och kapacitanser före avbildningen. Vid avbildningen väljer vi vanligen ω_{a0} och $\omega_0 T$ som det

analoga, resp det tidsdiskreta filtrets bandgränser, dvs för lågpassfilter väljer vi

$$\omega_{a0} = \omega_{ac} \operatorname{resp} \omega_0 T = \omega_c T.$$

Om referensfiltret är normerat m a p bandgränsen ("tabellfilter") är ω_{ac} = 1.

Exempel: Studera konstruktionen av ett 3:e ordningens elliptiskt LP-filter av leapfrogtyp med cutoff-vinkeln $\omega_c T = \pi/5 = 36^\circ$. Utgå från referensfiltret CC 03 15 16 enligt figuren och använd bilinjär transformation från s- till z-planet.

Normerade värden: $R_i = R_L = 1$; $C_{1n} = C_{3n} = 0.989727$; $L_{2n} = 1.086872$; $C_{2n} = 0.052941$. $A_{max} = 0.0988 \text{ dB}$; $A_{min} = 40.8 \text{ dB}$.

Det avnormerade referensfiltret får man genom att dividera kapacitanser och induktans med tan(18°). Filtret ovan är normerat m a p gränsvinkelfrekvensen, varför $\omega_{ac} = 1$.

Ett flödesschema av leapfrogtyp ses i figuren nedan. I schemat har s bytts ut mot $(1 - z^{-1})/(1 + z^{-1})$. Observera, att vi inte har gjort någon kompensering av det slag som används vid LDI-design, eftersom det här är fråga om "exakt design".

De bilinjära uttrycken i flödesschemat lämpar sig inte för direkt realisering med den typ av operationsförstärkare som avses här (det är annorlunda med "fullt differentiella" förstärkare). Det bästa vore att få ett schema av samma slag som för LDI-filtret. Det går att få nästan samma slags schema, om man utför lämpliga manipuleringar.

Resultatet visas i figuren nedan.

 $\begin{array}{l} a_0=RA_1k_1/2R_i\;;\;\;a_1=RA_1/R_i\;;\;\;a_2=A_1/k_2\;;\;\;a_3=A_2k_2\;;\;\;a_4=A_2/k_3\;;\\ a_5=A_3k_3\;;\;\;a_6=RA_3/R_L\;;\;\;b_1=B_1/k_2k_3\;;\;\;b_2=B_2k_2k_3\;. \end{array}$

Där konstanterna A_1, \ldots, B_2 bestäms enligt:

$$A_{1} = \frac{2}{R\alpha_{1} + R/L_{2} - R/R_{i}}; A_{2} = \frac{2R}{L_{2}}; A_{3} = \frac{2}{R\alpha_{2} + R/L_{2} - R/R_{L}}$$
$$B_{1} = \frac{RC_{2} + R/L_{2}}{R\alpha_{1} + R/L_{2} - R/R_{i}}; B_{2} = \frac{RC_{2} + R/L_{2}}{R\alpha_{2} + R/L_{2} - R/R_{L}}$$

Valet $R = R_i = R_L$ (det finns ingen anledning att välja något annat i detta fall) och insättning av siffervärden ger följande koefficienter för $\omega_c T = 36^\circ$ och $k_1 = k_2 = k_3 = 1$ (oskalat filter):

 $a_0 = 0.3987 \ ; \ a_1 = a_2 = a_5 = a_6 = 0.7975 \ ; \ a_3 = a_4 = 0.5979 \ ; \ b_1 = b_2 = 0.1842$

En SC-realisering av filtret visas i figuren nedan. På ingången har vi använt oss av Knobs bilinjära integrator (blocket $1 + z^{-1}$ tillsammans med $-1/(1 - z^{-1})$ ger en bilinjär integrator. Eftersom Knobs integrator här är icke-inverterande, motsvarar detta en fasförskjutning på 180°. Dessutom har vi en extra faktor $z^{-1/2}$, som emellertid saknar betydelse på ingången till filtret. Observera switchen S, vilken införts för att mellanresultatet från Knobs integrator skall undvikas i resten av filtret. Vi kunde eventuellt ha infört en extra sample-and-hold-krets på utgången av filtret i stället (vilken alltså skulle ha samplat utsignalen under den halvperiod som indikeras av figuren). Man kan visa att även detta skulle ha givit ett riktigt resultat, men det hade inte varit någon fördel med en sådan lösning, eftersom den hade medfört en extra förstärkare.

Knobs integrator kan bytas ut mot en parasitkompenserad bilinjär integrator, vilket innebär att man i så fall sparar en förstärkare (buffertförstärkaren i sample-and-hold-kretsen). Detta ger en kretslösning som innehåller samma antal förstärkare som en LDI-realisering. Ett annat sätt att realisera det bilinjära filtret visas i figuren nedan, där vi använt en bilinjära integrator utan mellanresultat. En fördel är att vi inte behöver använda switchen S i detta fall. Längst ned ser vi beloppsfunktionen för det bilinjära filtret, då detta skalats så att maximum är 0 dB. Frekvensområdet för plottningen är mellan 0 och halva samplingsfrekvensen, dvs ett halvt varv runt enhetscirkeln i z-planet.

På liknande sätt som för 3:e ordningens filter kan bilinjära filter av högre ordning konstrueras med hjälp av flödesgrafsmanipulering. Metoden lämpar sig speciellt för LP-filter av udda ordning. Nedan visas flödesschemat till ett 5:e ordningens elliptiskt filter. Här gäller att $R = R_i = R_L = 1$; $L_m = L_{mn}/tan(\omega_c T/2)$; $C_m = C_{mn}/tan(\omega_c T/2)$; där n indikerar "normerat värde". Vidare är skalningsparametrarna inkluderade i koefficienterna (kapacitanskvoterna).

I nästa figur visas SC-realiseringen till ett 5:e ordningens elliptiskt filter med referensfiltret C 05 15 45. Filtret är skalat så att de maximala signalnivåerna är lika med insignalens nivå (med avseende på amplituderna). Kapacitansen C är godtycklig. Man kan byta fasning på switcharna i grenarna a—b och c—d utan att detta påverkar överföringsfunktionen (man måste i så fall byta fasning för båda switcharna i varje gren). Vidare ser vi amplitudkarakteristiken till filtret.

15. LDI-transformation eller bilinjär transformation?

Man kan fråga sig varför man vid konstruktion av SC-filter av leapfrogtyp över huvud taget skall använda sig av LDI-transformationen med dess approximationer, när det uppenbarligen går att konstruera SC-filter "exakt" enligt den bilinjära transformationen. Svaret torde i viss mån redan ha framgått av de exempel som visats ovan. Det är besvärligare att använda den bilinjära transformationen, p g a svårigheten att hitta lämpliga manipulationer eller ekvivalenta operationer för flödesgraferna. För LP-filter av udda ordning finns det lämpliga lösningar enligt ovan, men försöker man t ex konstruera ett LP-filter av jämn ordning med hjälp av "flödesgrafsmanipulering", råkar man i svårigheter direkt. Här förefaller det inte finnas någon bra lösning, utan man måste troligen öka antalet förstärkare, om man vill ha en parasitokänslig realisering (och en sådan vill man definitivt ha). Man kan då lika gärna välja ett gradtal högre, och således få ett effektivare filter av udda ordning.

När det gäller bandpassfilter, har man visat att man kan åstadkomma vissa bilinjära strukturer. Åtminstone sådana som utnyttjar LP-filter av udda ordning, vilka sedan frekvenstransformeras, går bra att konstruera, är de fortfarande i hög grad föremål för forskning, varför det egentligen är för tidigt att säga något definitivt om vad som går att åstadkomma. Nya lösningar presenteras fortfarande, och tiden får utvisa vad som är möjligt eller lämpligt.

Allmänt kan sägas om LDI-transformen att den är relativt enkel att använda just av den anledningen att SC-integratorer genom sina överföringsfunktioner på ett naturligt sätt motsvarar transformationen. För relativt smalbandiga filter (när förhållandet mellan samplingsfrekvens och bandbredd är större än storleksordningen 20 — 50) ger LDI-transformationen (med kompensering)

ett relativt bra resultat. Men vid bredbandigare filter duger inte LDItransformationen, utan här måste man använda bilinjär transformation ("exakt design").

Genom att välja en lämplig samplingsfrekvens kan man i viss mån bestämma vilken tvp av transformation man skall använda. Om denna frekvens väljs relativt hög i förhållande till filtrets bandbredd (och bandbredden är specificerad för ett visst givet frekvensområde), kan LDI-transformation användas. Emellertid finns det skäl att inte välja hög samplingsfrekvens (och därmed hög klockfrekvens), eftersom man då får högre krav på framför allt förstärkarna (m a p "settlingstid" etc). Vidare leder en högre samplingsfrekvens till att större chip-area går åtvid implementeringen av kondensatorerna, eftersom kapacitansernas relativa storlek skiljer sig mera vid en hög samplingsfrekvens än vad som är fallet vid en lägre. Detta talar till förmån för ett bredbandigare bilinjärt filter, dvs ett filter designat för en lägre samplingsfrekvens. Emellertid, om samplingsfrekvensen väljs alltför låg, ökar känsligheten för variationer i elementvärdena. I värsta fall kan man även få instabila filterrealiseringar, [9]. Alltså måste man (som alltid när det gäller filter) kompromissa för att få ett så bra resultat som möiligt. I många fall har man dock inte möjlighet att "välja" samplingsfrekvensen som man vill. Filtret ingår kanske som del i ett större tidsdiskret system, och då är det troligen andra delar av systemet som är avgörande för valet av samplingsfrekvens. En annan viktig sak att tänka på är att kraven på ett antivikningsfilter som föregår SC-filtret, då man har analoga insignaler, ökar med lägre samplingsfrekvens.